

# 理学部紹介



## 代数、幾何、解析から応用数学まで 各分野の研究者が数学の最先端に導く

数学の歴史は深く、古代ギリシャ時代から現在まで連綿と進歩し続けてい ます。数学が他の学問と大きく異なるのは、過去が否定されるわけではない ということ。正しいとされていた理論が新しい発見により書き換えられると いったことが、数学にはありません。古代ギリシャ時代に証明された定理は 今も正しく、陳腐化することはありません。積み重なり、新たな地平が開け ていくのが数学なのです。

まだ誰も解いていない未解決問題を解くという、独立した純粋な学問と しての数学も魅力的ですが、数学には自然科学追究のための学問という側 面もあります。元来、数学は、数や図形、空間、あるいは自然の現象を理解 したい、表現したいという情熱によって発展してきました。例えば幾何学に 多様体というテーマがあります。19世紀にできた概念で、これを提唱した リーマンの頭の中には、宇宙は無限なのか有限なのかという素朴な疑問が あり、全ての可能性を数学的に表現しようと考えてこの概念を生み出しま した。アインシュタインの相対性理論はこの多様体の概念が前提となって います。あらゆる現象を記述し、論理化・体系化する数学は真理探究に不可 欠な学問なのです。

高校までの数学は実は19世紀前半までにわかっていたこと。大学で扱う のはそれ以降に発展した数学で、膨大な知の密林をかきわけ、最先端に近づ くには然るべきガイド役が必要です。当数学科には代数、幾何、解析の純粋 数学から応用数学まであらゆる分野の基本的な講義が揃っており、各科目を その分野を代表する研究者が指導しています。興味の方向がどこに向こうと も、じっくり深く学ぶことができる環境が整っています。

#### 大学の数学で大事なのは、 計算よりも論理や創造力

方程式や関数、微分や積分など高校ま での数学は、公式を暗記したり計算を したりと型にはまった正確性を要求さ れる学問という印象が強かったのでは ないでしょうか。しかし、大学で学ぶ専 門の数学は、もっと漠然と抽象化した 面があり、むしろ大事なのは、どれだけ 論理が詰まっているかであり、対象を イメージする創造力が大切です。「なぜ」 という疑問を持ち、納得できる答えが

見つかるまで集中して じっくりとひとつの問 題に取り組むことが できる、そんな人は 数学がどんどん 面白くなると思



# (代数学)

#### 研究環境紹介

#### コミュニケーションスペース



#### 先人が築いた定理と証明を題材にして その細部にまで迫ることで専門性を高める

数学は基本的に個人プレー。そのため大学院における研究スタイルも他の専 攻とは異なり、担当教員から指導を受ける「セミナー」配属となります。まず、 めざす専門分野の文献に書かれた定理を選び、その証明の行間を教員らと議 論しながら読み込むことで、対象をイメージする力や最新の論文が読める能 力を涵養。未解決問題にも挑戦します。

#### 数学には、まだわかっていないことなど ないように思うのですが?

それは、わかっていることしか学んでいないからで、数学が持 つ高度な論理がそういう印象を与えているのだと思います。専 門の数学はもっと奥深く、学ぶことは膨大にある上、数学的に 未解決の問題もたくさんあります。むしろ問題は増えているの です。

#### 数学は社会に役立つ学問でしょうか?

もちろんです。数学は有用な公式や理論、新しい概念を物理学 など他分野に提供することで自然科学の発展にも寄与してい ます。また、ある自然現象や経済現象をモデル化して解析・予 測するのも数学が得意とする分野でその恩恵は世界中の人が 受けています。

Q&A

# 素粒子、物性から、宇宙、惑星まで幅広い領域を扱う全国で唯一の物理学科

わたしたちの宇宙がどんな法則に従い、どのようにして成り立っているのかを明らかにしようとする学問が物理学です。素粒子や原子核のような極小の世界から、星や銀河の極大の世界まで、宇宙に存在するすべてのものが物理学の研究対象となります。

例えば、物質の性質を考えるとき、その基本的な要素は元素ですが、元素の性質を特徴づけているのは原子の中心にある原子核です。元素の種類を決める原子番号は、原子核の中に含まれる陽子の数により決まっていて、物質の最も基本的な性質である質量も、その大半(99.97%)は原子核の質量によって占められています。また、原子核には莫大なエネルギーが蓄えられていて、そのエネルギーは重力と並んで宇宙の進化を駆動するエネルギー源になっています。一方で、原子核はそれよりもずっと小さな素粒子の組み合わせによって作られています。つまり、原子核というひとつの研究対象は、素粒子の振る舞いから、わたしたちの身の回りにある様々な物質の性質、果ては、宇宙の成り立ちにまで、物理学のすべての研究対象と物理法則を通じて深くつながっています。

物理学には様々な研究分野がありますが、それぞれの研究分野はお互いに 影響を及ぼしたり、補完し合ったりしていて、本来、研究分野に境界はあり ません。すべての自然現象を貫く普遍的な原理を明らかにすることが物理学 の究極の目標なのです。だからこそ全国で唯一、物性、素粒子・原子核から地 球・惑星、天文まで幅広い分野の講義の揃う本学の物理学科で学ぶ意味は大 きいと思います。

#### 先生は絶対ではなく 議論は下克上

当物理学科創設以来の伝統、それは、「議論は下克上」であるということです。物理において、先生が言っていることが正しいという保証はまったくなく、先生によって意見が異なる場合もあります。学生も遠慮なくそれは違うのではないかと言えるし、学生の方がいいアイデアを出すこともあるのです。そういう闊達な議論ができる場がなければ物理学が進歩することはありません。

ただし、議論をするにはそれ なりの専門的な知識と実験を 通じた現場の経験が必要に なることは言うまでも ありません。



川畑 貴裕 教授 理学研究科物理学専攻原子核実験研究室

#### 研究室紹介 原子核実験研究室



#### 独自に開発した測定装置を駆使して、 原子核の成り立ちと物質の起源を解明

MAIKo+アクティブ標的やCANDLES検出器など独自の検出器を用いて、原子核の内部で起こる極めて稀な現象や自然界に存在しないハイパー核・陽子/中性子過剰核を調べることで、原子核の性質を調べるとともに宇宙を構成する物質がどのようにして作られたのかを解明することを目指しています。

#### 物理学は現代社会のどこに 役立っているのでしょうか?

例えば、飛行機が空を飛ぶ技術は、流体物理学、材料物性物理 学、運動方程式、半導体物理学など物理学の結集です。物理学 が明らかにしてきた法則、原理の利用なくして現代社会は成 り立たないと言っても過言ではありません。

#### 大学院に進学すると 専攻は2つに分かれるのですか?

物理学科から接続する大学院の専攻には「物理学専攻」と「宇宙地球科学専攻」がありますが、この2つの専攻は一体で運営されており、入試の大部分も共通になっているので、双方の専攻にまたがって研究室を志願することも可能です。

Q&A



#### 分子レベルで物質の構造や性質を解明 普遍的な自然の原理に迫る

自然の仕組みを知るのが自然科学の大命題で、その根底にある真理を追究 するのが理学です。アプローチの方法は様々ですが、物質に焦点を当て、分 子のレベルでその構造、反応、性質を明らかにしていくのが化学の役割です。 同時に、明らかになった物質の機能や特性を利用して、社会に役立つ新しい 物質をつくり出すことができるのも化学ならではの特色で、真理の追究とも のづくりを両輪として化学は発展しているのです。

自然は意地悪で、真理は分厚いベールに包まれています。我々が見る手段 は限られており、分子レベルでなければ見えてこないものがたくさんありま す。そこで大事になるのが特殊な測定装置の数々。例えばX線構造解析装置 を使って分子の状態、性質を明らかにしていくと、そこにある電子の振る舞 いがわかってきます。電子は原子の状態では規定された動きしかしません が、分子になった瞬間にまったく違った振る舞いを見せ、分子の構造が少し でも異なれば電子の動きも異なるのです。化学者は分子を非常に意識しつつ も塊として認識するのではなく、ひとつひとつの微細な構造を認識した上で どう作用するかを明らかにし、それを突破口に新たな概念を生み出し、自然 の真理に迫るのです。

また、細胞膜に生理活性物質(薬物や毒素などの化合物)がどのように突 き刺さり、細胞の中でどう作用するのかを分子レベルで解析し、生命現象の 解明に大きな成果を上げている研究室があるように、化学にも多様な研究 テーマがあります。無機化学から物理化学、有機化学、高分子科学まで、化 学の幅広い分野を網羅する学びと研究の環境が整い、興味に合致する道を 選択できるのも当化学科の特長です。

#### 純粋な物質科学としても奥深く、 ものづくりも楽しめるのが化学

世界は有限の元素から成り立ちながら も、化学反応と化学結合は地球上の物 質とその営みに無限の多様性をもたら します。我々は物質を原子や分子レベ ルで研究し、原子や分子は時に規則正 しく、時には魔法のような複雑さでそ の姿を現します。化学の魅力はこれら の自然の原理を受け入れた上で、それ らにアプローチし、これまでにない物 質を創ることが可能なことです。困難

> であるからこそ喜びの溢 れる瞬間です。世界は美 しく、魅力に溢れ、そし てまだ我々の知らない ことを隠していま す。この深淵な世界 に手を伸ばしてみま



Q&A

#### 構造有機化学研究室



#### 自然に存在しない物質をつくり出すことで 自然の中では見えてこない真理の扉を開く

地球上には存在しない不安定な物質があります。構造有機化学研究室では、い わば自然の選択から漏れてしまったそんな物質に着目。分子の骨格を工夫し ながら未知の物質を合成することで、これまで知られていなかった電子の振 る舞いを明らかにしようとしています。そこには想像を超えた分子の姿があ り、数々の新しい発見をもたらしています。

#### 環境問題に関心があるのですが 化学科で勉強できますか?

環境問題のほとんどが化学に関わっていますし、実際に環境 問題に取り組んでいる卒業生も多くいます。当化学科には、「環 境」を冠した講義や研究室こそありませんが、カリキュラムの 内容は充分それに対応しており、広い意味で環境に関わる研 究も多く行われています。

#### 化学科で学ぶのに物理の知識は必要ですか?

大学で化学を学ぶには物理の基礎的な知識は必ず必要になり ますが、現在化学科に入学してくる学生の約1/3は、高校のと きに物理を選択していません。その対策として、物理未履修者 を対象とした授業を開講しており、補うことができるような力 リキュラムになっています。

## 生命現象の深層にある根本原理を探究 鍵を握るタンパク質の研究で強みを発揮

我々は、たったひとつの卵から発生しています。発生の過程では細胞が分裂して増えるだけでなく、表皮や筋肉、骨、神経、血液など多種多様な機能を持った細胞がつくり出されます。目に注目してもその成り立ちは複雑で、網膜とレンズになる細胞があるべき場所に確実に発生します。なぜそうなるのか。胚発生のメカニズムに限らず、脳や神経の働き、細胞機能、動物の多様性、さらには遺伝や細胞が増える仕組み、植物の成長の仕組みなど、生命は不思議に満ちています。このような生命現象の解明に挑み続けているのが大阪大学理学部の生物科学科。生命の理学として深層にある根本原理を解明することを使命とし、あくまでも基礎的な研究に特化。伝統的に分子レベルの研究が盛んで、タンパク質の構造と機能に関する研究では、圧倒的な歴史と蓄積を有しています。

世界の最前線でサイエンスを切り開くべく、様々な研究機関とも共同研究 を進めているのも特徴で、学内では蛋白質研究所、生命機能研究科、微生物 病研究所など、学外では理化学研究所(生命機能科学研究センター)やJT生 命誌研究館などと連携。これらの機関の研究者による講義や施設見学、一部 卒業研究配属も行っています。

また、当生物科学科には、伝統的な生物学に重点を置いた「生物科学コース」と、数学・物理学・化学も重視する「生命理学コース」を設置。新規融合分野や境界領域の研究をリードできる人材育成にも力を注いでいます。生命の根源的な謎に興味のある方にとってエキサイティングな学びと研究の場となることは間違いありません。

#### 様々な方向に発展する 生物科学

様々な生物の遺伝情報が解明されましたが、遺伝情報がどのようにして生物を作り上げるのかは未だよくわかりません。これを理解するための研究手法は日進月歩で進んでいます。理学研究科では生物の仕組みを理解することが中心ですが、個々の研究成果を社会に生かす可能性もあります。生物科学の研究には様々な方向からのアプローチがあり、研究をする教員や学生のアイ

デアを生かせる場面が たくさんあります。自 然の原理を深く考え、 創意工夫が好き な方は特に歓迎 致します。



理学研究科生物科学専攻 染色体構造機能学研究室

#### 研究室紹介

#### 細胞構築学研究室



#### 細胞内で宅配便のような働きをする タンパク質の動く仕組みと構造を解明

生物が生きていく上で欠くことのできないものはなんでしょう? その一つは、細胞の中で、必要な物質を、必要な時に、必要な場所に運んでいる「物質輸送システム」です。細胞構築学研究室(昆隆英研究室)では、脳神経系での物質輸送に特に重要な役割を果たしているタンパク質「ダイニン」に着目し、生化学・生物物理学的アプローチにより、その原子構造と動く仕組みを解明しました。

#### 大阪大学の理学部生物科学科は、 物理と化学で受験できるのですか?

生物科学科には、「生物科学コース」と「生命理学コース」があります。両コースとも物理と化学で受験できます。特に生命理学コースは、生物学と物理学、化学との境界領域を開拓できる人材育成を目的として設置されているコースであり、そのため、受験科目は物理と化学が必須になっています。

#### 高校で生物を習っていなくても大丈夫ですか?

生命理学コースがあるため、新入生の約半数は受験科目に生物を選択していません。その中には、高校で履修したが受験に使わなかったという人が約半数、まったく習わなかったという人も約半数います。そのため「補習」的な講義が1年生の春学期に用意されています。

Q&A



理

学

^

0)

招

待

## 大阪大学理学部

School of Science, THE UNIVERSITY OF OSAKA

〒560-0043 豊中市待兼山町1-1 Tel:06-6850-6111(代表)

https://www.sci.osaka-u.ac.jp/

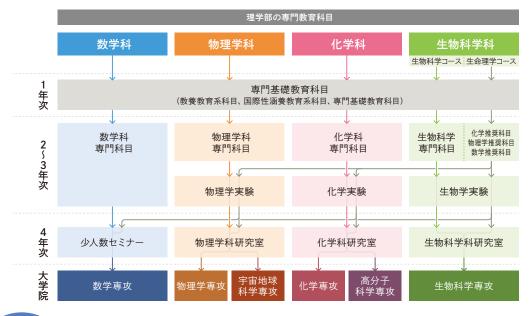
2025年7月(第31版) 大阪大学理学部広報委員会・企画推進本部

## School of Science

#### 理学部について

## 不思議に満ちた自然界の法則を追究 世界最先端の研究から新たな知を生み出す




世界は「不思議」に満ちています。「なぜ」「どうして」という素朴な疑問を出発点に、知的好奇心をふくらませながら、まだ誰も知らない謎を解く。これこそが理学です。

学問分野としての理学は、その歴史の深さから、ともすると古臭い学問という印象があるかもしれません。しかし、現在の最先端の科学技術の多くは理学の成果をもとに発展したものであり、現在でも絶えず理学(基礎)から工学(応用)へ、研究テーマの移動が起こっています。純粋な興味から出発した研究成果が、視点を変えると社会に役立つ技術になり得るという例は、枚挙にいとまがありません。その意味で「理学」は全てのサイエンスの源となる「泉」のような存在であると言えます。工学部や基礎工学部との決定的な違いもここにあり、理学部では自然界の法則に迫るべく、研究活動のベクトルは常に"真理"の追究に向けられています。

自然界の「不思議」に目を向け、その謎解きに真剣に取り組むという理学者精神を、伝統と実績ある大阪大学理学部・理学研究科でぜひ育んでください。

4学科6専攻からなる理学部・理学研究科では、約220名の専任教員(研究者)、約1,200名の学部学生、約900名の大学院生が集っており、世界最先端の研究に取り組む中で、日々新たな知を生み出しています。

自然界の「不思議」を解き明かすにはいるいるな視点が不可欠で、幅広い知識が必要になります。理学部に入学すると、数学科、物理学科、化学科、生物科学科に分かれて教育を受けますが、最初の1年間は、科学のどの分野に進む人にも必要となる数学、物理学、化学、生物学、地学などの基礎を身につけるための専門基礎教育科目を中心に学習します。2~3年生では、各学科の専門分野を基礎からしっかりと学び、4年生の「卒業研究」では、各分野を代表する研究者の指導を受けながら、研究の最先端に触れることになります。また、「なぜだろう」と好奇心を持ち、自ら学ぼうとする意欲的な人の能力をつらに伸ばす理学部独自の教育プログラム(理数オナープログラム)も実施しています。



キーワード で見る 理学部

## 糟粕を嘗むる勿れ

理学部の歴史は、昭和6年の大阪帝国大学発足と同時に始まります。 当初より理学部が創設された背景には、当時、日本の産業の中枢に あった大阪で、模倣的な工業から脱皮するには「基礎的純正理化学」 が重要であるという先見的認識と危機感がありました。以来、長岡 半太郎初代総長(土星型原子模型を提唱したことで有名な物理学 者)の「糟粕を嘗むる勿れ」とのモットーを精神的規範に、誰にもま ねのできない独創的研究を数多く生み出してきました。

## 稍松老勿

「勿嘗糟粕」糟粕(そうはく)を嘗(な)むる勿(なか)れと読み、"つねに創造的であれ"といった意味である。

## Admissions

#### 入試制度

#### 自らの頭脳で考えて真理を探究したい―― そんな好奇心旺盛な人を多元的な評価尺度で選抜

理学部では次のような人を入試により受け入れます。

- ●数学および理科をバランスよく勉強し、基礎学力をしっかりと身につけた人
- ●与えられた知識を吸収することだけに満足せず、 自分自身の頭脳で考えて 真理を探究・発信することを熱望する人
- 実験などを通して主体的に科学を楽しみ、 自主研究を行った人

特に一見自明に見える事柄に対しても「なぜ?」という 疑問を抱いてその根源的理由を探ろうとする好奇心旺盛 な人を歓迎します。

※詳細は入試実施年度の7月に公表される「大阪大学入学 者選抜要項」で必ず確認してください。

一般選抜

前期日程のみ募集し、後期日程は募集して いません。受験教科・科目は右のとおりです。

#### 前期日程

●数学・英語・理科(物理、化学、生物から2科目。 学科により科目の指定があります。)

総合型選抜(研究奨励型)

高等学校等において、数学、物理学、化学、生物学、地学など科学分野の優れた自由研究を行った人を対象とする入試です。(スーパーサイエンスハイスクール生徒研究発表会出場者、日本学生科学賞入選者および最終審査会進出者、ジャパン・サイエンス&エンジニアリング・チャレンジ高校生"科学技術"チャレンジ最終審査会出場者、大阪大学SEEDSプログラム実感コース修了者など)

第1次 選考

#### 書類選考

出願時に提出された書類(研究成果の概要など)により選考を実施します。

第2次 選考

#### 研究発表と口頭試問

判定は、提出書類、大学入学共通テストの成績、研究発表と口頭試問の結果を総合して行います。

総合型選抜 (挑戦型)

高等学校等で行った課外活動の実績(自由研究、海外留学、社会貢献活動、国際科学オリンピック国内予選や各種サマープログラム参加など)があり、数学、物理学、化学、生物学、地学など基礎科学分野の学問・研究に強い興味を持つ人を対象とする入試です。

第1次 選考

#### 書類選考

出願時に提出された書類により選考を実施します。

第2次 選考

#### 小論文および口頭試問

判定は、提出書類、大学入学共通テストの成績、小論文と口頭試問の結果を総合して行います。

特別入試

上記のほかに、特定の者を対象とする特別入試を実施しています。

- ●帰国生徒特別入試
- 私費外国人留学生特別入試
- ■国際科学特別入試

※特別入試は、入試の種類によって募集する学科やコースが異なります。 詳細は、入試実施年度の「大阪大学入学者選抜要項」をご確認ください。

Website

#### https://www.sci.osaka-u.ac.jp/ja/admissions/admissions\_u/





最先端の科学を 高校生に 理学部では、広く一般の方々に対して、科学技術への興味や関心に応えると共に研究活動への理解を深めていただこうと公開講座や研究体験など様々な機会を設けています。物理学科では、高校生のために「Saturday Afternoon Physics」と題して、宇宙から極微の世界までをテーマにした講義や実験などを行う体験教室を実施。数学科では「高校生のための公開講座」、化学科では「一日体験入学」、生物科学科では「高校生のためのタンパク質科学実習」などを開催しています。また、大阪大学では高校生向け研究プログラム「SEEDSプログラム」を実施しています。

# Campus Life

#### キャンパスライフ

## 理学プラスアルファで 大学生活が有意義かつ アクティブに

キャンパスは学びの場であると同時に出会いや感動や喜びに満ちた 空間であり、未来への道を模索する時間を過ごせます。イベントも盛 りだくさんで何をつかむかは本人次第。大阪大学のキャンパスには 様々なチャンスがあふれています。

#### 春学期

(4月1日~6月中旬)

2017年度より2学期制から4 学期制に移行しました。柔 軟な履修計画が可能になる と同時に、サマースクール やインターンシップに参加 しやすくなり、留学のチャン スも広がりました。

試験実施期間

夏学期

(6月中旬~9月30日)

試験実施期間 **夏季休業** 

(~9月30日)

9

11

秋学期

(10月1日~12月初旬)

試験実施期間

冬学期

(12月初旬~3月31日)

試験実施期間

#### 入学式

大阪大学では例年、大阪城ホールで入学式を行っており、期待に胸ふくらませる新入生たちの笑顔があふれます。

いちょう祭

4月末~5月初頭にかけて豊中・吹田両キャンパスで開催される大学祭です。大阪大学の創立を祝うほか、新入生の歓迎、学生・教職員の親睦、地域の方々との連携など様々な目的をもって催され、学生が運営する120以上の企画に加え、各学部による研究室公開なども行われ、キャンパスはお祭りムードにあふれます。





理学部を紹介するプログラムとして、 学科説明会や研究室公開、模擬講義な どを行います。大阪大学理学部では何 が学べるのか、どのような研究が行わ れているのかを知る絶好の機会です。



#### まちかね祭

毎年11月の初めに豊中キャンパスで開催される大学祭です。コンサート、模擬店、即売会、展覧会、ワークショップなど、およそ200もの学生企画が催され、キャンパス内は多くの人々で賑わいます。



#### 卒業式 学位授与式



# いちょう祭まちかね祭

理学部のある豊中キャンパスでは、春の「いちょう祭」、秋の「まちかね祭」と年2回の大学祭が盛大に開催されます。もちろん、一般の方や小中高校生にもキャンパスを開放しており、理学部でも行事の一環として、理学部施設一般公開を行っています。「サイエンスを観よう、触れよう、感じてみよう!」をコンセプトに、各学科・専攻が趣向を凝らして数学・物理学・化学・生物科学・高分子科学・宇宙地球科学の面白さがわかる展示や実験、研究室見学・体験ツアーなどを企画しています。



## Graduate Schoo

#### 大学院の紹介

#### 数学専攻

Department of Mathematics

#### 最前線の数学を学び、 数多の未解決問題に挑戦する

代数、幾何、解析、応用数理等、各分野の世界最高レベルの 数学を手掛ける研究者が揃った日本有数の数学教室です。 卒業研究・修士論文・博士論文の完成のため、各種セミナー が開講され、各教員の指導の下に、最前線の知識を学ぶと共 に未解決問題への挑戦が行われています。



#### 物理学専攻

Department of Physics

#### 研究第一主義の伝統を受け継ぎ、 物理学の地平を開く

世界的な物理学研究の中心地のひとつ。日本初のノーベル 賞に輝いた湯川秀樹博士の中間子論もここから生まれました。因習にとらわれない、自由で生き生きとした雰囲気、独 創性を重んじる研究第一主義の伝統は今も引き継がれ、各 分野に有能な人材を数多く送り出しています。



#### 宇宙地球科学専攻

Department of Earth and Space Science

#### 極限状態等で起こる自然現象を 新たな手法で解明

宇宙や惑星、地球内部または様々な極限状態等において起こる、我々の住む地球上とは異なる自然現象を、新しく開発した手法を用いて解明しています。伝統的な天文学や地球物理学とは異なった視点から、現代物理学の成果を基礎にして宇宙と地球の相互関連を明らかにします。



#### 化学専攻

Department of Chemistry

#### 原子や分子の性質から自然現象の謎を解明

自然現象や生命活動も様々な化学物質の反応や相互作用に 帰着します。それらをナノメートルスケールの物質の個性、 すなわち原子や分子の性質から解き明かすべく、国際的に も高い水準の研究を活発に展開。自然科学ならびに人間社 会の発展、環境問題の解決に寄与しています。



#### 高分子科学専攻

Department of Macromolecular Science

#### 高分子の基礎研究における世界的な拠点

物理、化学、生命科学の境界領域である高分子科学は、その利用価値の高さや生命現象を理解する上で最重要の基礎学問のひとつ。本専攻は、高分子の合成から構造・物性・機能・生体系に至る高分子科学のあらゆる部門をカバーする極めてバランスのとれた世界的な拠点です。



#### 生物科学専攻

Department of Biological Sciences

#### 全ての研究は生命の本質を 理解するためにある

分子レベルから細胞・個体レベルまでの幅広い分野において 第一線で活躍する研究者が、生命の本質を理解するための研 究を推進。様々な生命現象を対象とし、これまでの生物学を 継承しながら21世紀の先端的方法をもちいて、生物の「な ぜ」「どのようにして」という問いを解決していきます。



理学部・理学研究科は、高いレベルの教育と研究を推進するため、附属の研究施設や研究活動を支援する組織などを有しています。熱・エントロピー科学研究センター、フォアフロント研究センター、先端強磁場科学研究センターでは世界最先端の研究活動が行われており、各研究室との共同研究も盛んです。2008年にノーベル物理学賞を受賞された南部陽一郎先生(大阪大学特別栄誉教授)の業績を称えた「南部陽一郎ホール」が2017年春に完成し、国際会議や各種研究会、南部コロキウムなどのイベントに活用されています。



## 南部陽一郎ホール

## Career after Graduation

#### 卒業後の進路

#### 問題の本質を見極め、解決する ミッション達成スキルが求められている

理学部の性格上、大学院への進学率はかなり高くなっ ていますが、学部を卒業して就職する場合でも、製造業 や情報・通信、金融関連の企業、あるいは公務員など多岐 にわたる分野で活躍しています。大学院に進学し、博士 前期あるいは後期課程を修了した場合は、大学やその他 の研究機関に職を得て研究者になるほか、近年では企業 に就職する者も少なくありません。そのようなケースで も多くが研究所などに配属されて活躍しています。

理学部で身につける「問題の本質を見極め、解決のた めの道筋を組み立てる」というミッション達成のための 思考・姿勢は、研究に限らずどのような仕事でも役に立 つ重要なスキルです。いずれの進路にしろ、幅広い科学 の基礎知識と高度な専門分野の理解、さらに論理的思考 力や課題解決スキルを持った人材として活躍が期待され ています。

● 進学 ● 企業など ● 公務員 ● 教員 ● 一時的な仕事に就いたもの ● その他

#### 理学部卒業生の進路状況 (令和4年度~令和6年度)



#### 学部卒業生の主な就職先

日研トータルソーシング/アウトソー シングテクノロジー/学校法人四天王 寺学園/DYM/ソニー生命保険/日 本ハムマーケティング/阪急阪神ホー ルディングス/滋賀県高等学校/かん ぽ生命保険/京都信用金庫/大樹生 命保険/ソフトバンク/PLAY/パー ソルエクセルHRパートナーズ

#### 大学院修了者の主な就職先

【数学専攻】東京大学/みずほ銀行 /NTTデータ/日本電機産業/三 菱電機インフォメーションシステムズ /東京理科大学/兵庫県教育委員 会/明治安田生命保険/住友生命 保険/損害保険ジャパン/プルデン シャル生命保険/ライクスタッフィン グ/パナソニックアドバンストテクノ ロジー/西日本電信電話/アムタス /日立チャネルソリューションズ/国 近畿地方整備局/大阪 十交诵省 大学/大阪医科薬科大学/朝日生 命保険レイチック√Artele/エステッ ク/日本総合研究所/Sky/三井住友 銀行/情報技術開発/キオクシア/ 日立製作所

物理学科

-時的な仕事に 0%

0.4%0.8%

64%

0.8%

テレビ大阪/キーエンス/六甲学院/ 三菱UFJニコス/フードテクノエンジ ニアリング/ダイドー/ローツェ/トラ イアルホールディングス/野村證券/ 気象庁/TOKYO BASE/新興化成/ = 菱雷機特機システム

学部卒業生の主な就職先

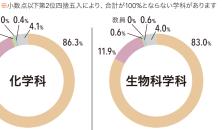
#### 大学院修了者の主な就職先

【物理学専攻】博報堂/オリンパス/ ブリヂストン/ENEOS/NTTデータ/ アサヒ飲料/金属技研/京セラ/旭 化成エレクトロニクス/ソニーセミコ ンダクタソリューションズ/マイクロ ンメモリジャパン/パナソニックイン ダストリー/藤本産業/デロイトトー マツファイナンシャルアドバイザリー/ KPMG FAS/PwCコンサルティング 【宇宙地球科学専攻】京セラドキュメ ントソリューションズ/構造計画研究 所/野村総合研究所(NRI)/パナソ ニックコネクト/日鉄ソリューションズ 関西/ポケモン/日立製作所/宇宙航 空研究開発機構/ブリーチ/日本自動 車研究所/関東学院/三井住友信託 銀行/気象庁/警察庁科学警察研究 所/PwC Japan/日本気象協会

#### 91.5% 86.3% 7.9% 化学科

教員 0% 0.4% 4.1%

1.2%


#### 学部卒業生の主な就職先

東西化学産業/TBSグロウディア/デ ンカ/Speee/愛媛朝日テレビ/京 セラ/ベイカレント・コンサルティング/ 中部近畿産業保安監督部近畿支部/ 東芝/アスコ/Sky/三井住友銀行/ 宮崎県/上田鍍金

#### 大学院修了者の主な就職先

【化学専攻】 コニカミノルタ/カネカ/ 日本触媒/大阪ガス/マイクロンメモ リジャパン/EYストラテジー・アンド・ コンサルティング/パナソニックイン ダストリー/トヨタ自動車/中外製薬/ MAX PLANCK INSTITUTE/京都大 学 IPS細胞研究所/横浜国立大学/ Brawijaya University/日本政策金 融公庫/三井住友カード

【高分子科学専攻】アシックス/ダイ キン工業/東レ/三井化学/日本触 媒/住友電気工業/村田製作所/デ ロイトトーマツコンサルティング/富 **士フイルムヘルスケアシステムズ/** 凸版印刷/日油/クラレ/塩野義製 薬/ENEOSマテリアル/ライオン, ミルボン/花王/レゾナック/出光興 産/パナソニックインダストリー



#### 学部卒業生の主な就職先

伯東/豊田通商/アパホテル/神戸 市教育委員会/気象庁/ビズリーチ/ AKKODiSコンサルティング/東日本 電信電話/コニカミノルタジャパン/ パナソニック/アビームコンサルティ ング/パーソルクロステクノロジー

#### 大学院修了者の主な就職先

【生物科学専攻】シミック/ロート製 薬/小野薬品工業/中外製薬/サラ ヤ/エス・ディー・エス バイオテック/ ニプロファーマ/沢井製薬/富士フィ ルム富山化学/エーザイ/ハウス食 品/サントリーホールディングス/山 崎製パン/大阪ガス/京セラ/ワール ドインテック/三菱商事/秀和特許事 務所/アクセンチュア/新日本科学/ National Synchroton Radiation Research Center/基礎生物学研究 所/大阪大学/大和証券グループ本 社/京都府教育委員会/新日本科学 PPD/富士通/日榮新化/クボタ/シ スメックス/第一三共/中外製薬/日 本新薬/ホーユー/大塚製薬/アスト ラゼネカ/塩野義製薬/大日本除蟲 菊/森永乳業/JFEスチール

#### Website https://www.sci.osaka-u.ac.jp/ja/campuslife/career/



大学に入ったら、自分の好きな学問分野 の最先端を早く知りたいと思っている方 に最適なのが、この「理数オナープログ ラム」です。このプログラムでは、自分の 見つけた課題に関する研究計画を立てて

自主研究を行い、研究成果を発表会で報告します。世界中で誰も知らないことを発見 する喜びを味わうことができます。自分の見つけた課題を研究するための研究費を申 請することもでき、また全国の科学コンテストにも参加できます。さらに、大学院の 講義も学部のときに早期聴講できます。



## Nords from Graduates

#### 卒業生より



NHK名古屋放送局 報道部映像編集部

高橋 開人 TAKAHASHI, Kaito

#### 「問題へのチャレンジの方法」 を見つけることができた

数学という非常に基礎的な学問を学べば、その上に積 み重なっている他の学問も理解できると考えて数学科を 選びました。また、数式で表されていない学問について も「論理的に語る」ことは大切で、そういった面でも論理 に魅力を感じました。在学中はまわりに自分よりも数学 ができる人が多くいて、実は数学に関してはあまり得意 意識は持っていませんでした。しかし、ひとつのことに 集中して取り組むことで自分なりの「問題へのチャレン ジの方法」を見つけることができたように思います。



日本分光株式会社 光分析ソリューション部

鈴木 仁子 SUZUKI, Satoko

理学部化学科 卒

#### 常に好奇心を持ち続けることが 将来の自分をつくる

高校時代から化学や物理が好きで、自然摂理の探求に 専念したいと思い化学科を選びました。学生時代には量 子化学や無機化学など基礎となる学問を学び、研究室で は化学合成に携わりました。そこで得られた化合物の構 造を明らかにする分析装置に興味を持ち、もっとよく知 り極めたいと思ったことから、分析機器メーカーに就職 しました。現在は抗体や核酸医薬品など最先端の医薬品 開発に貢献できる装置開発を行っています。学生時代に 得た知識や経験を活かしながら、常に好奇心を持ち続け ることが将来の自分をつくると感じています。

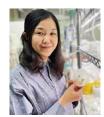


Website https://rigakuyu.sci.osaka-u.ac.jp/



大阪大学理学 🙀 倶楽部

理学部・理学研究科に所属する留学生や外国人研究者と国際交流に興味を持つ日本人が、ティー ブレイクを楽しみながら交流を深められる「国際交流サロン」を設置しています。留学生と日本人 学生有志によって構成されたグループ「Science Buddy」も国際交流イベントを企画・運営するな ど活発に活動しており、相互理解を深めています。また理学部では、英語でのコミュニケーション カ・プレゼンテーション力を向上させるための「理系科学英語夏期海外研修」と「グローバル理系 研究者育成インテンシブプログラム」を開講しており、毎年多くの学生が参加しています。




株式会社 日立製作所 研究開発グループ エネルギーイノベーションセンタ

宮崎 康一 MIYAZAKI, Koichi

#### 自然科学に対する好奇心は 今の仕事にまでつながっている

理学部を受験しようと思っている高校生のみなさん は、どこかの時点で「自然って何なんだろう」という疑問 を持ったはずです。私が出会った理学部の方(学生だけ でなく教授陣も)は、皆が当然と思っていることに疑問 を抱く人たちでした。その姿勢が理学部で学ぶ上で一番 重要です。私は宇宙誕生の謎に興味がありました。自然 科学に対する好奇心は、大学での勉強や研究、さらには、 先進のガン治療法の一種である粒子線治療に使う装置の 研究開発という現在の仕事にまでつながっています。



神戸大学大学院理学研究科 特命講師

## 酒井 友希

#### まだわかっていないことを 自分の手で発見したい

私が理学部を進学先として選んだ理由は、まず、理科 の勉強が好きで「生きている」ということの仕組みについ てもっと学びたかったからです。また、高校までの教科 書に書かれていることにも、実はまだわかっていない部 分がたくさんあることを知り、自分の手で明らかにして いくのは楽しそう!と思ったからです。そして、高校の生 物の先生から聞いた「理学部生物学科の日常」の話がイキ イキと面白かったのが最後の決め手でした。現在も教科 書に載るような発見を目指して研究をしています。

