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Summary
Mathematics, originally centered in the concepts of

number, magnitude, and form, has long been growing
since ancient Egyptian times to the 21st century.
Through the use of abstraction and logical reasoning, it
became an indispensable tool not only in natural
sciences, but also in engineering and social sciences.
Recently, the remarkable development of computers is
now making an epoch in the history of mathematics.

Department of Mathematics is one of the six
departments of Graduate School of Science, Osaka
University. It consists of 6 research groups, all of
which are actively involved in the latest developments
of mathematics. Our mathematics department has
ranked among the top seven in the country.

The department offers a program with 32 new
students enrolled annually leading to post-gradute
degrees of Masters of Science. The department also
offers a Ph.D. program with possibly 16 new students
enrolled annually.

Graduate courses are prepared so as to meet various
demands of students. Besides introductory courses for
first year students, a number of topics courses are
given for advanced students. Students learn more
specialized topics from seminars under the
guidance of thesis advisors.

Our department has our own library equipped with
about 500 academic journals and 50,000 books in
mathematics, both of which graduate students can use
freely. Also by an online system, students as well as
faculty members can look up references through
Internet.
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Algebra, Geometry, Analysis, Global Geometry &
Analysis, Experimental Mathematics, Mathematical
Science.
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Partial Differential Equations
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Low-dimensional Geometry, Topology

My research is centered on surfaces (i.e. 2-
dimensional manifolds), which are
fundamental object in geometry and
topology.

In particular, I am interested in the
relations between geometric structures
(locally homogeneous structures) on
surfaces, and representations of the
fundamental groups of surfaces S (surface
groups) into Lie groups G.

In the case that the Lie groups G = PSL(2,
R) or PSL(2, C) and that representations
have discrete images, beautiful theories
have been developed extensively, in
particular, in relation to the classification
and the deformation theorem of 2- and 3 -
dimensional manifolds.
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Partial differential equations have their
origins in various fields such as mathematical
physics, differential geometry, and
technology. Among them I am particularly
interested in the partial differential equations
that describe wave propagation phenomena:
hyperbolic equations and dispersive
equations. A typical example of the former is
the wave equation, and that of the latter is the
Schroedinger equation. For many years I have
studied basic problems for these equations:
existence and uniqueness of solutions,
structure of singularities of solutions,
asymptotic behavior of solutions, and spectral
properties. Recently I make efforts to
understand how the singularities of solutions

for Schroedinger equations or, more
generally, dispersive equations propagate.
The center of this problem is to determine
when and how the singularities of solutions
for the dispersive equations can be described
by the asymptotic behavior of solutions for
the associated canonical equations.
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Kento FUJITA
Algebraic Geometry

My research interest is algebraic geometry.
Especially, I am interested in birational
behavior of Fano varieties, a special class of
algebraic varieties. I have researched the
Mukai conjecture, the existence of certain
good models over some reducible varieties,
and an algorithm to classify log del Pezzo
surfaces (joint work with Kazunori
Yasutake), etc. Recently, I am interested in
K-stability of Fano varieties; I (and
independently Chi Li) gave a birational
interpretation of K-stability of Fano
varieties.
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Akio FUJIWARA
Mathematical Engineering
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"What is information?" Having this naive yet
profound question in mind, I have been
working mainly on noncommutative
statistics, information geometry, quantum
information theory, and algorithmic
randomness theory.

One can regard quantum theory as a
noncommutative extension of the classical
probability theory. Likewise, quantum
statistics is a noncommutative extension of
the classical statistics. It aims at finding the
best strategy for identifying an unknown
quantum object from a statistical point of
view, and is one of the most exciting research
field in quantum information science.

Probability theory is usually regarded as a
branch of analysis. Yet it is also possible to

investigate the space of probability measures
from a differential geometrical point of view.
Information geometry deals with a pair of
affine connections that are mutually dual
(conjugate) with respect to a Riemannian
metric on a statistical manifold. It is known
that geometrical methods provide us with
useful guiding principle as well as insightful
intuition in classical statistics. I am interested
in extending information geometrical
structure to the quantum domain, admitting
an operational interpretation.
I am also delving into algorithmic and game-

theoretic randomness from an information
geometrical point of view. Someday I wish to
reformulate thermal/statistical physics in
terms of algorithmic information theory.
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My research interest is mostly in complex
and differential geometry, which are closely
related with algebraic geometry and
theoretical physics. My own research started
with special geometric structures such as
Calabi-Yau, hyperKaehler, G2 and Spin(7)
structures. These four structures exactly
correspond to special holonomy groups which
give rise to Ricci-flat Einstein metrics on
manifolds. It is intriguing that these moduli
spaces are smooth manifolds on which local
Torelli type theorem holds. In order to
understand these phenomenon, I introduce a
notion of geometric structures defined by a
system of closed differential forms and
establish a criterion of unobstructed
deformations of structures.

When we apply this approach to Calabi-Yau,
hyperKaehler, G2 and Spin(7) structures, we
obtain a unified construction of these moduli
spaces. At present I also explore other
interesting geometric structures and their
moduli spaces.

Yasuhiro HARA
Topology
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The field of my study is topology and,
especially, I study the theory of
transformation groups. The Borsuk-Ulam
theorem is one of famous theorems about
transformation groups. This theorem is often
taken up as an application in elementary
lectures about the homology theory. The
content of the theorem is as follows: for every
continuous map from the n-dimensional
sphere to the n-dimensional Euclidian space,
there exists a point such that the map takes
the same value at the point and at the
antipodal point. A famous application of this
theorem is the following. ''On the earth, there
is a point such that the temperature and
humidity at the point are the same as those at
the antipodal point.'' We consider a free

action of a group of order two on the n-
dimensional sphere to prove the Borsuk-Ulam
theorem. Then for any equivariant map (any
continuous map which preserves the structure
of the group action) from the sphere to itself,
the degree of the map is odd. By using this
fact, we obtain the Borsuk-Ulam theorem. In
the case of the Borsuk-Ulam theorem, we
consider spheres and free actions of a group
of order two. Actually, when we consider
other manifolds and actions of other groups,
there are some restrictions of homotopy types
of equivariant maps. I study such restrictions
of homotopy types of equivariant maps by
using the cohomology theory, and I study
relationships between homotopy types of
equivariant maps and topological invariants.
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My research subject is nonlinear partial
differential equations. Especially, I am
interested in the global behavior of the
solutions to nonlinear dispersive equations or
nonlinear wave equations.
Dispersive equations describe the dispersion

phenomena of waves and are basic equations
in quantum physics. For example,
Schroedinger equation and Klein--Gordon
equation are typical dispersive equations,
which appear in quantum physics or
relativistic quantum field theory. Wave
equations express the properties of motion in
waves. Considering nonlinear interactions
between particles,
we can treat various physical phenomena,

for example, optics, superconductivity, and

Bose-Einstein condensate, by the nonlinear
dispersive or wave equations. Nonlinear
dispersive or wave equations have two
properties.
One is dispersion and the other is
nonlinearity. They conflict each other. Thus,
there are so many behaviors of the solutions. I
study this subject to find all behavior.

Takao IOHARA
Nonlinear Partial Differential Equations

My research interest is concerned with
nonlinear partial differential equations
appearing in fluid mechanics. The current
research topic is the equations of the motion
of viscous incompressible fluid which has
free moving surface. The motion of viscous
incompressible fluid is governed by the
Navier-Stokes equations, which are not easy
to solve because of their nonlinearity. The
free moving surface adds another
nonlinearity to the problem and the study of
it needs more elaborate technique than the
problems on fixed domain.
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Differential Geometry
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My research interest is in geometry,
particularly, interaction between topology and
differential geometry. For instance, I am
studying the nonexistence problems of
Einstein metrics and Ricci flow solutions on
4-manifolds by using the Seiberg-Witten
equations. I am also interested in the
geometry of the Yamabe invariant. The
computation of the Yamabe invariant for a
given manifold is a difficult problem in
general. By using the Seiberg-Witten
equations, I determined the exact value of the
Yamabe invariant for a large class of 4-
manifolds which includes complex surfaces
as special cases. Furthermore, I am also
interested in both the Ricci flow in higher
dimension and some generalized versions of
the Ricci flow like the Ricci Yang-Mills flow.

The Ricci flow was first introduced by R.
Hamilton in 1981 and used as the main tool in
G. Perelman's solution of the Poincare
conjecture in 2002. Perelman introduced
many new and remarkable ideas to prove the
conjecture. The theory developed by
Hamilton and Perelman is now called the
Hamilton-Perelman theory. One of my recent
interests is to investigate geometric analytical
properties of the generalized versions of the
Ricci flow from the Hamilton-Perelman
theoretical point of view.
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Masataka IWAI
Complex geometry, Algebraic geometry, Several complex variables

My main research object is a projective 
manifold, which is a submanifold of the 
complex projective space. Especially, I study the 
structure of projective manifolds whose tangent 
bundles or cotangent bundles have semipositive 
curvature. I have researched the structure of 
projective manifolds whose tangent bundles are 
semipositive by using the theory of singular 
Hermitian metrics. Finally, I established the 
structure theorem of semipositive foliations. 
Now, I'm studying the structure of projective 
manifolds whose cotangent bundles are 
semipositive.

The interesting part of studying projective 
manifolds is that we can use any techniques, 
such as complex geometry, algebraic geometry, 
several complex variables, and so on. Because 
projective manifolds are complex manifolds by 
definition, we can use the techniques of complex 
geometry and differential geometry. On the 
other hand, since projective manifolds can be 
represented by a zero set of polynomials by 
Chow's theorem, we can use the techniques of 
algebraic geometry and birational geometry. 
Furthermore, projective manifolds are built from 
a collection of unit balls in the complex Euclid 
space, we can use the techniques of several 
complex variables. In this way, I study 
projective manifolds using methods in a wide 
range of fields.
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My research area is topology (geometric
topology-- knot theory, low dimensional
topology). I have been working on surface-
links in 4-space, including 2-knots and 2-
links, 2-dimensional braids, braided surfaces,
and 4-manifolds.
Surface-links are closed surfaces smoothly

embedded in the 4-space, and they are
considered equivalent if they are ambiently
isotopic. It is a quite difficult problem to
decide whether two given surface-links are
equivalent or not. Invariants are often used to
show that two surface-links are not
equivalent. However, few invariants are
known for surface-links. I am interested in
studying surface-links and their invariants
using "quandles" and graphics so-called
"charts".

A quandle is an algebra with a binary
operation which satisfies three axioms
corresponding to Reidemeister moves in knot
theory. A homology theory of quandles was
established and we can use it for construction
of invariants for surface-links. 2-
dimensional braids, or surface braids, are a
generalization of classical braids. They are in
one-to-one correspondence to oriented
surface-links in 4-space modulo certain basics
moves. As a method of describing 2-
dimensional braids, a chart description was
introduced. This method has been extended in
a general theory of charts. For example,
charts can be used for studies of Lefschets
fibrations of 4-manifolds.

Until now, I have tried to extend the
geometry of nilpotent groups to the geometry
of solvable groups. More precisely, I have
studied the cohomology theory of
homogeneous spaces of solvable Lie groups
and complex geometry of non-Kähler
manifolds. It seems that the gap between
nilpotent groups and solvable groups is small.
But this gap contains a potential for
geometry. By the growing out of left-
invariance and non-triviality of local system
cohomology, I succeeded in giving a great
surprise.
Recently, I am interested in the geometry

which relates to reductive or semi-simple
groups in contrast to nilpotent or solvable
groups In particular, I study non-abelian

Hodge theory, variations of hodge structures,
lattices in semi-simple Lie groups and locally
homogeneous spaces.
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Nonlinear Partial Differential Equations
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I have been studying topology of smooth four-
dimensional manifolds, in particular interested in
homology genera, representations of
diffeomorphism groups to intersection forms, and
branched coverings. Let me give a simple
explanation of what interests me the most, or
homology genera. The homology genus of a smooth
four-dimensional manifold M is a map associating to
each two-dimensional integral homology class [x] of
M the minimal genus g of smooth surfaces in M that
represent [x]. For simplicity, reducing the
dimensions of M and [x] to the halves of them
respectively, consider as a two-dimensional
manifold the surface of a doughnut, or torus T, and a
one-dimensional integral homology class [y] of T.
Draw a meridian and a longitude on T as on the
terrestrial sphere, and let [m] and [l] denote the
homology classes of T represented by the meridian
and the longitude respectively. It turns out that [y] =
a[m] + b[l] for some integers a and b, and that [y] is

represented by a circle immersed on T with only
double points. Naturally interesting then is the
following question: what is the minimal number n of
the double points of such immersions representing
[y]? Easy experiments would tell you that, for
example, n = 0 when (a,b) = (1,0) or (0,1) and n = 1
when (a,b) = (2,0) or (0,2). In fact, it is proved with
topological methods that n = d−1, where d is the
greatest common divisor of a and b. It is the minimal
number n for T and [y] that corresponds to the
minimal genus g for M and [x]. The study on the
minimal genus g does not seem to proceed with only
topological methods; it sometimes requires methods
from differential geometry, in particular methods
with gauge theory from physics; though more
difficult, it is more interesting to me. I have been
tackling the problem on the minimal genus g with
such a topological way of thinking as to see things
as if they were visible even though invisible.

My research interest is in nonlinear partial
differential equations. To be more specific, I
am working on the initial value problem for
nonlinear wave equations (in a narrow sense),
and also for partial differential equations
describing the nonlinear wave propagation in
a wider sense, such as Klein-Gordon
equations and Schroedinger equations.

The initial value problem is to find a
solution to a given partial differential
equation with a given state at the initial time
(a given initial value). However, in general, it
is almost impossible to give explicit
expression of solutions to nonlinear
equations. Therefore, in the mathematical
theory, it is important to investigate the
existence of solutions and also their behavior

when they exist.
If we consider the initial value problem for

the equations mentioned above and if the
initial value is sufficiently small, the
existence of solutions up to arbitrary time (the
existence of global solutions) is mainly
determined by the power of the nonlinearity.
Especially, when the nonlinearity has the
critical power, the existence and non-
existence of global solutions depend also on
the detailed structure of the nonlinear terms. I
am interested in this kind of critical case, and
studying sufficient conditions for the
existence of global solutions and their
asymptotic behavior.
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My research theme is mainly mapping class
groups of surfaces (including non-orientable
surfaces) and 3-dimensional handlebodies. In
particular, I am interested in exploring them
from the viewpoints of geometric group
theory. Geometric group theory is a new field
among a lot of areas of mathematics and it is
progressing significantly. One of the most
important problems in geometric group
theory is classifying finitely generated groups
by “quasi-isometries”. Two finitely generated
groups are quasi-isometric if roughly
speaking, their word metrics are the same up
to linear functions. An interesting part of the
geometric group theory is that the properties
of the infinite groups are revealed one by one
by measuring with a coarse scale of quasi-

isometries, but not isometries. Currently,
groups which are quasi-isometric to mapping
class groups have hardly been found. Then
what I am wondering is the question "Which
groups are quasi-isometric to the mapping
class group?". Based on this big theme, I
would like to elucidate properties of mapping
class groups, and deepen their understanding.

Yoshihiko MATSUMOTO
Differential Geometry, Several Complex Variables
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Working on differential geometry, partly with some flavor of
function theory of several complex variables. I’ve been mainly
studying geometry of “asymptotically complex hyperbolic
spaces,” with emphasis on a partial differential equation called
Einstein’s equation on them. While being a generalization of
geometry of bounded strictly pseudoconvex domains in
function theory of several complex variables, it’s beyond the
scope of the field of complex geometry. Based on this
experience, I’m now aiming toward some more general theory
that applies to other “spaces that converge to ones with much
symmetry,” which are called “asymptotically symmetric
spaces.”

Asymptotically hyperbolic spaces, which are the most basic
examples of asymptotically symmetric spaces, are lacking
symmetries such as the homogeneity or the isotropicity of the
genuine hyperbolic spaces in the strict sense. However, as a
point in the space moves more away from a fixed one, its
neighborhood looks more like an open set of the hyperbolic
space. Recall the “natural” conformal structure on the sphere at
infinity of the hyperbolic space—the boundary at infinity of an

asymptotically hyperbolic space is equipped with a conformal
structure in the same way.
In the case of asymptotically complex hyperbolic spaces,
whose model has little less isotropicity than that of the
hyperbolic space, the associated geometric structure on the
boundary at infinity is the CR (Cauchy–Riemann) structure.

The fundamental question of geometry of asymptotically
symmetric spaces is the following: what property of the space
reflects the geometric structure at infinity and the topology of
the space, and in what way? This includes the question whether
or not there is a space with some certain property under a given
condition on the structure at infinity and the topology. The
existence problem of Einstein metrics is a typical example.
Although asymptotically hyperbolic spaces have been studied

for several decades, many fundamental questions remain
unsolved. And, if we think of understandings from the general
viewpoint of geometry of asymptotically symmetric spaces, our
field still seems to be kind of a wilderness. I’d cultivate it by
going back and forth between analyses on special cases and
abstract considerations.



Department of Mathematics

Graduate School of Science
2022-2023

Haruya MIZUTANI
Partial Differential Equations

The Schrödinger equation is the
fundamental equation of physics for
describing quantum mechanical behavior.
I am working on the mathematical theory
of the Schrödinger equation and my
research interest includes scattering
theory, semiclassical analysis, spectral
theory, geometric microlocal analysis and
so on. My current research has focused on
various estimates such as decay or
Strichartz inequalities, which describe
dispersive or smoothing properties of
solutions and are fundamental for
studying linear and nonlinear dispersive
equations. In particular, I am interested in
understanding quantitatively the influence

of the geometry of associated classical
mechanics on the behavior of quantum
mechanics, via such inequalities.
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Takehiko MORITA
Ergodic Theory, Probability Theory, Dynamical System
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I specialize in ergodic theory. To be more
precise, I am studying statistical behavior of
dynamical systems via thermodynamic
formalism and its applications.
Ergodic theory is a branch of mathematics
that studies dynamical systems with
measurable structure and related problems. Its
origins can be found in the work of
Boltzmann in the 1880s which is concerned
with the so called Ergodic Hypothesis.
Roughly speaking the hypothesis was
introduced in order to guarantee that the
system considered is ergodic i.e. the space
averages and the long time averages of the
physical observables coincide. Unfortunately,
it turns out that dynamical systems are not
always ergodic in general. Because of such a

background, the ergodic problem (= the
problem to determine a given dynamical
system is ergodic or not) has been one of the
important subjects since the theory came into
existence. In nowadays ergodic theory has
grown to be a huge branch and has
applications not only to statistical mechanics,
probability, and dynamical systems but also
to number theory, differential geometry,
functional analysis, and so on.
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Tomonori MORIYAMA
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I am interested in automorphic forms of
several variables. A classical automorphic
(modular) form of one variable is a
holomorphic function on the upper half plane
having certain symmetry. Such functions
appear in various branches of mathematics,
say notably number theory, and have been
investigated by many mathematicians.

There is a family of manifolds called
Riemannian symmetric spaces, which is a
higher-dimensional generalization of the
upper half plane. The set of isometries of a
Riemannian symmetric space forms a Lie
group G. Roughly speaking, an automorphic
form of several variables is a function on a
Riemannian symmetric space satisfying the
relative invariance under an "arithmetic“

subgroup of G and certain differential
equations arising from the Lie group G.
Studies on automorphic forms of several
variables started from C. L. Siegel's works in
1930s and have been developed through
interaction with mathematics of the day.

Currently I am working on two themes: (i)
the zeta functions attached to automorphic
forms and (ii) explicit constructions of
automorphic forms, by employing
representation theory of reductive groups
over local fields. One of the joy in studying
this area is to discover a surprisingly simple
structure among seemingly complicated
objects.
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Shohei NAKAMURA
Harmonic Analysis, Real Analysis

Department  
of  
Mathematics

I am currently working in Harmonic analysis on
Euclidean spaces and real analysis. In particular,
my research purpose is to understand the
“oscillation” phenomena quantitatively via the
inequalities. Let us think about a sequence a_n =
(-1)^n for instance. If one sums up the sequence
up to n=1000, then the result is 1 as +1 and -1
would be cancelled out. However, if one ignores
the cancellation (oscillation) and sums up the
sequence |a_n|, then the result is 1000 which
seems to have a big difference than before.
Although this is the simplest example of
oscillation phenomena, the problem would be
much more involved once one has the oscillation
in more complicated way. For example, one has
the oscillation e^{-ixy}, which is the linear and so
relatively simpler oscillation, in the definition of
the Fourier transform. However, in the definition
of the Schrodinger propagator, one has e^{-i (xy +

t y^2)}, which is the quadratic oscillation. Hence
its treatment would be no longer trivial and one
needs to invent a clever way to exploit the
complicated oscillation.
Such oscillation phenomena appear in several
mathematical fields. For instance, I have already
mentioned before, in the theory of partial
differential equations as well as in Fourier
analysis. Not only in analysis, but one can also
find such phenomena in number theory; a problem
to count a number of integer solutions of certain
Diophantine equation can be boiled down to the
question how to capture the “osillation”. Among
them, I am in particular interested in how to
capture the oscillation of the Fourier transform on
a hypersurface. Related to this problem, I am also
interested in geometric inequalities with the sharp
constant, like Young’s convolution inequality.

My research interests lie in the topology 
of manifolds. In particular, I am interested 
in that of contact and symplectic
manifolds. One of the main problems in 
this area is how much these geometric 
structures impose constraints on the 
topology of those manifolds. One can 
address this problem by various methods. 
Among them, I have mainly used 
fibration-like structures: Lefschetz
fibrations and open book decompositions. 
One can extract information about the 
topology of contact and symplectic
manifolds from fibration-like structures, 

and vice versa.
I have studied low-dimensional, 

namely 3-/4-dimensional contact and 
symplectic manifolds. I have recently 
started trying to understand higher 
dimensions. Little is known about this 
case, because of lack of knowledge on 
mapping class groups of higher-
dimensional manifolds, so this is 
challenging. With various techniques 
such as holomorphic curve techniques, 
now I am diving into the higher-
dimensional world.
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I study Number theory and Arithmetic
Geometry. In the research of Number theory,
we study not only properties of integers and
rational numbers, but every kinds of problems
related to integers. For example, we are very
much interested in rational points of algebraic
varieties defined over the field of rational
numbers. Number theory has a long history
and we had a great progress, which is typical
in the proof of Fermat‘s conjecture by Wiles
and the proof of Mordell’s conjecture by
Faltings in 20th century. At the beginning of
my career, my subject of research was the
study of the l-adic etale cohomology of
varieties over local fields. More recently, I
am interested in the study of special values of
zeta functions via the philosophy of Iwasawa

theory. Precisely speaking, my project is to
study Iwasawa theory from the view point of
Galois deformations. I think that Number
theory is full of surprise as we see a lot of
unexpected relations between different kinds
of objects.

I have an interest in periodic objects.
Expanding rational numbers into decimal
numbers is delightful. The decimal number
expansion becomes the repeat of a sequence
of some integers. I have an appetite for
continued fraction expansions, never get tired
to calculate it, and want to find continued
fractions with sufficiently long period. It is on
the way to Gauss' class number one
conjecture. Recently, I am studying iteration
of rational functions. For a rational function
g(x) with rational coefficients, a complex
number z with g(g(...g(z)...))=z is called a
periodic point on g(x) and is an algebraic
number. I expect that number theoretical
properties which such an algebraic number z
has is described by the rational function g(x).

This does not seem to work out anytime, but
one can find many rational functions g(x) that
describe the Galois group, the class number,
the class group, and so on of a periodic point
of g(x). I think that this should be surely
useful, and calculate like these every day.
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Koji OHNO
Algebraic Geometry

Shin-ichi OHTA
Differential Geometry, Geometric Analysis

My research subject is geometry, especially
differential geometry and geometric analysis
related to analysis and probability theory. A
keyword of my research is “curvature”
which represents how the space is curved.
As seen in the difference between the sums
of interior angles of triangles in a plane and
a sphere, the behavior of the curvature
influences various properties of the space
(the shapes of triangles, the volume growth
of concentric balls, how heat propagates, the
behavior of entropy, etc.). This powerful
and versatile conception has been applied to
Riemannian manifolds, metric spaces,
Finsler manifolds, Banach spaces, as well as
discrete objects such as graphs.
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When I was a student, I thought I knew number
theory, geometry, but algebraic geometry was
unfamiliar for me. One may say algebra and
geometry are different fields, but you know the
theory of quadratic curves and are aware of
efficiency of algebraic methods for solving
geometric problems. The field called algebraic
geometry lies on such a line. When I was studying
the theory of quadratic curves, I wondered, ''Why do
they only treat special equations like quadratics?
There are many other equations. But how can they be
treated?". When I discovered the answer might lie on
this field, I decided to enter this field. The easiest
non-trivial equation has the form such as "the second
power of y = an equation of x of degree three",
which defines the so called "an elliptic curve". The
theory of elliptic curve was one of the greatest
achievements of nineteenth century and keeps
developing today. Recently, the famous Fermat's

conjecture has been solved using this theory. The
theory of quadratic and elliptic curves involve only
two variables x, y. It is natural to think of the
equations with many variables. In fact the algebraic
geometers are expanding the theory, curves to
surfaces and higher dimensional cases these days.
Two dimensional version of elliptic curves are called
K3 surfaces, which can be treated only using the
theory of linear algebra(!) thanks to the Torelli's
theorem. These days, the 3-dimensional versions,
which is called Calabi-Yau threefolds are fascinating
for algebraic geometers like me. Somehow
theoretical physicists are also interested in this field.
To study Calabi-Yaus by specializing these to ones
with a fiber structure (on which field, I'm now
working) might be one method, but I have been
thinking that a new theory is needed. These days,
many intriguing new theories have appeared and one
may find more!
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My research interest is in nonlinear partial
differential equations. Especially, I am working on
the Cauchy problem for nonlinear dispersive
equations, such as nonlinear Schrödinger and
nonlinear wave equations. The Cauchy problem is a
problem to find a solution to a differential equation
satisfying what are known as initial conditions
(initial data) at a certain (initial) time.
For nonlinear problems, it is usually not possible to

obtain explicit solutions, so we need to show an
existence result of a solution. It then may happen that
the solution changes significantly when the initial data
change small. However, this phenomenon causes some
difficulties on analysis of physical models and
differential equations. Hence, it is often required the
well-posedness of the Cauchy problem, which ensures
that the solution continuously depends on initial data.

One of the distinguishing features of linear dispersive
equations is that the speed of the spread of solutions
depends on its frequency. Therefore, some kind of
smoothing effect can be obtained by incorporating the
oscillation caused by dispersion due to time evolution
into the analysis. Furthermore, by grasping what kind
of oscillation is generated from each nonlinear term,
we can use the smoothing effect in the analysis of
nonlinear dispersive equations.
I am studying the well-posedness of the Cauchy

problem for dispersive equations by using the
smoothing effect due to such a dispersive nature.
Recently, I am also interested in asymptotic behavior
of solutions to the Cauchy problem and stochastic
dispersive equations.

Geometric objects which are described as the
collection of solutions of algebraic equation(s), such
as ellipses, parabolas, and hyperbolas, are called
algebraic varieties. These are the subject of study in
the field of algebraic geometry, and I have been
working on various problems in this area.
In the early days, I was studying topics about
Geometric Invariant theory (GIT) and birational
geometry. GIT is a theory about quotients of
algebraic varieties by algebraic group actions, and in
birational geometry certain "transformation
(modification)" of algebraic varieties is studied. The
definition of a GIT quotient depends on a choice of a
parameter, which is called a stability condition, and
one obtains different quotients by changing the
stability conditions. Typically these quotients are all
birational to each other, and in good situations it turns
out that the birational geometry of the quotient
variety is complete described in this way.
I have proved several properties of this class of

varieties. Recently I am mainly investigating
algebraic varieties from categorical points of view.
One of my interests is the "irreducible
decomposition" of the derived category of coherent
sheaves. This in fact is motivated by birational
geometry, and important techniques of birational
geometry, e.g. the canonical bundle formula, are
used. I am also studying non-commutative
deformations of algebraic varieties and their moduli
spaces. Derived categories again plays a central role,
but other interesting topics such as GIT, geometry of
elliptic curves, and birational transformation of non-
commutative algebraic varieties also show up.
Through the study, I found an interesting and
unexpected relationship with an old invariant theory
which goes back to the end of the 19th century. I am
also trying to understand to what extent the derived
category of coherent sheaves keeps the geometric
information of the original variety.
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Yuichi SHIOZAWA
Probability Theory

My research area is probability theory. In
particular, I am working on the sample path
analysis for symmetric Markov processes
generated by Dirichlet forms. Dirichlet form
is defined as a closed Markovian bilinear
form on the space of square integrable
functions. The theory of Dirichlet forms
plays important roles in order to construct
and analyze symmetric Markov processes.

I am interested in the relation between the
analytic information on Dirichlet forms and
the sample path properties of symmetric
Markov processes. I am also interested in
the global properties of branching Markov
processes, which are a mathematical model
for the population growth of particles by
branching.
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My research area is number theory. More
precisely, I am interested in mysterious
relations between L-functions and
arithmetic invariants which are attached to
algebraic varieties defined over the
rationals. Roughly speaking, L-functions
are regarded as a vast generalization of the
Riemann zeta function, and arithmetic
invariants here are rational solutions of
algebraic equations, Selmer groups etc.
Although there are conjectural formula for
general algebraic varieties of several forms
nowadays, almost all of them are still
unsolved. For example, the BSD
conjecture is such a conjecture for elliptic
curves (algebraic varieties of dimension

one), and it is one of The Millennium
Prize Problems by the Clay Mathematics
Institute. By this example, we may see
difficulty and importance of such
conjectures connecting L-functions and
arithmetic invariants. I would like to
contribute to them. So far, I have studied
relations between L-functions and Selmer
groups of elliptic curves and elliptic
modular forms by p-adic methods, where p
is a rational prime number. I will next
study to understand higher-dimensional
objects as well.



My current interests are mathematical aspects of
the superstring theory, in particular, algebraic
geometry related to the mirror symmetry.

More precisely, I am studying homological
algebras and moduli problems for categories of
"D-branes" that extend derived categories of
coherent sheaves on algebraic varieties.

Indeed, I am trying to construct Kyoji Saito's
primitive forms and their associated Frobenius
structures from triangulated categories defined via
matrix factorizations attached to weighted
homogeneous polynomials.

For example, I proved that the triangulated
category for a polynomial of type ADE is
equivalent to the derived category of finitely
generated modules over the path algebra of the
Dynkin quiver of the same type.

Now, I extend this result to the case when the
polynomial corresponds to one of Arnold's 14

exceptional singularities and then showed the
"mirror symmetry" between weighted
homogeneous singularities and finite dimensional
algebras, where a natural interpretation of the
"Arnold's strange duality" is given.
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I specialize in Probability theory. In particular, I
am interested in infinite dimensional stochastic
analysis, Monte-Carlo method, and probabilistic
number theory. Here I write about the Monte-
Carlo method. One of the advanced features of the
modern probability theory is that it can deal with
"infinite number of random variables". It was E.
Borel who first formulated "infinite number of
coin tosses" on the Lebesgue probability space,
i.e., a probability space consisting of [0,1)-interval
and the Lebesgue measure. It is a remarkable fact
that all of useful objects in probability theory can
be constructed upon these "infinite number of coin
tosses". This fact is essential in the Monte-Carlo
method. Indeed, in the Monte-Carlo method, we
first construct our target random variable S as a
function of coin tosses. Then we compute a sample
of S by plugging a sample sequence of coin tosses

--- , which is computed by a pseudo-random
generator, --- into the function.
Now, a serious problem arises: How do we realize
a pseudo-random generator? Can we find a perfect
pseudo-random generator? People have believed it
to be impossible for a long time. But in 1980s, a
new notion of "computationally secure pseudo-
random generator" let people believe that an
imperfect pseudo-random generator has some
possibility to be useful for practical purposes.
Several years ago, I constructed and implemented
a perfect pseudo-random generator for Monte-
Carlo integration, i.e., one of Monte-Carlo
methods which computes the mean values of
random variables by utilizing the law of large
numbers.
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My research field is Fourier analysis, and I
am particularly interested in the theory of
function spaces. Fourier series were
introduced by J. Fourier(1768-1830) for the
purpose of solving the heat equation. Fourier
considered as follows:"Trigonometric series
can represent arbitrary periodic functions".
However, in general, this is not true. Then,
we have the following problem: "When can
we write a periodic function as an infinite (or
finite) sum of sine and cosine functions?".
Lebesgue space which is one of function
spaces plays an important role in this classical
problem. Here Lebesgue space consists of
functions whose p-th powers are integrable.
In this way, function spaces are useful for
various mathematical problems. As another

example, modulation spaces were recently
applied to pseudodifferential operators which
are important tool for partial differential
equations, and my purpose is to clarify their
relation.

My research field is probability theory. In
particular I am interested in problems related
to so-called "Hydrodynamic limit", which is a
certain type of space-time scaling limits.
Hydrodynamic limit means a method which
determines a macroscopic quantity of a
microscopic system such as particles systems.
To tackle a difficult problem related to
Hydrodynamic limit, it is necessary to invoke
results on functional analysis or partial
differential equations, and to use specific
arguments for particle systems and wide
knowledge of probability theory.
Hydrodynamic limit is formulated as Law of
large numbers for a macroscopic quantity
such as the number of particle systems or the
current for a microscopic system. I am

working on related Central limit theorem and
Large deviation principle.

In recent years, my another interest is
Random topology, which has arisen from the
development of Topological data analysis in
applied mathematics. I am working on this
new research area with my probabilistic
technique although this theme is not related to
above Hydrodynamic limit deeply.
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Motoo UCHIDA
Algebraic Analysis, Microlocal Analysis

My research field is algebraic analysis and
micro-local analysis of partial differential
equations. The view point of micro-local
analysis (with cohomology) is a new important
point of view in analysis introduced by Mikio
Sato in the early 1970s. Thinking from a
micro-local point of view helps us to well
understand a number of mathematical
phenomena (at least for PDE) and to find a
simple hidden principle behind them. Even for
some classical facts (scattered as well known
results) we can sometimes find a new unified
way of understanding from a micro-local or
algebro-analytic viewpoint.
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My current interest is the Geometry of Numbers. The
Geometry of Numbers was founded by Hermann
Minkowski in the beginning of the 20th century.
Minkowski proved a famous theorem known as
"Minkowski's convex body theorem", which asserts
that "there exists a non-zero integer point in V if V is
an o-symmetric convex body in the n-dimensional
Euclidean space whose volume is greater than 2^n".
When V is an ellipsoid, this theorem is refined as
follows. Let A be a non-singular 3 by 3 real matrix and
K(c) the ellipsoid consisting of points x such that the
inner product (Ax, Ax) is less than or equal to c > 0.
For i = 1,2,3, we define the constant c_i as the
minimum of c > 0 such that K(c) contains i linearly
independent integer points. Then c_1, c_2, c_3
satisfies the inequality c_1c_2c_3 <= 2|det A|^2. This
is called "Minkowski's second theorem". A similar
inequality holds for any n-dimensional ellipsoid.
Namely, if A is a non-singular n by n real matrix and
K(c) is the n-dimensional ellipsoid defined by (Ax,
Ax) <= c, we can define c_i for i = 1,2, ..., n as the

minimum of c > 0 such that K(c) contains i linearly
independent integer points. Then the inequality
c_1c_2...c_n <= h(n)|det A|^2 holds for any A. The
optimal upper bound h(n) does not depend on A, and
is called Hermite's constant. We know h(2) = 4/3, h(3)
= 2, h(4)= 4, ..., h(8) = 256, but h(n) for a general n is
not known. A recent major topic of this research area
is the determination of h(24). In 2003, Henry Cohn
and Abhinav Kumar proved that h(24) = 4^24.
(Incidentally, h(3) was essentially determined by
Gauss in 1831, and h(8) was determined by Blichfeldt
in 1953. If you would determine h(9), then your name
would be recorded in treatises on the Geometry of
Numbers.) Now I study (an analogue of) the Geometry
of Numbers on algebraic homogeneous spaces. One of
my results is a generalization of Minkowski's second
theorem to a Severi-Berauer variety. In addition, I am
interested in the reduction theory of arithmetic
subgroups, automorphic forms, the algebraic theory of
quadratic forms and Diophantine approximation.



Department of Mathematics

Katsutoshi YAMANOI
Complex Analysis, Complex Geometry

My research interest is Complex geometry and
Complex analysis, both from the view point of
Nevanlinna theory. In the geometric side, I am
interested in the conjectural second main
theorem in the higher dimensional Nevanlinna
theory for entire holomorphic curves into
projective manifolds. Also I am interested in
the behavior of Kobayashi pseudo-distance of
projective manifolds of general type. These
problems are related to an algebraic geometric
problem of bounding the canonical degree of
algebraic curves in projective manifolds of
general type by the geometric genus of the
curves. In the analytic side, I am interested in
classical problems of value distribution theory
for meromorphic functions in the complex
plane.
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My main research object is singularities of
algebraic varieties. An algebraic variety is a
"figure" formed by solutions of algebraic
equations. Such a figure often has points
where the figure is sharp-pointed or intersects
itself. Singularities make the study of an
algebraic variety difficult. However since
they often appear under various constructions,
it is important to study them. Also
singularities are interesting research object
themselves. More specifically, I am interested
in resolution of singularities, the birational-
geometric aspect of singularities, the McKay
correspondence.

Although these are classical research areas,
changing a viewpoint or the setting of a
problem, one can sometimes find new
phenomenon. Such a discovery is the greatest
pleasure in my mathematical research. To
pursue research, I use various tools like
motivic integration, Frobenius maps, moduli-
theoretic blowups, non-commutative rings,
and sometimes make ones by myself.
Recently I am fascinated by mysterious
behaviors of singularities in positive
characteristic (a world where summing up
several 1's gives 0.)
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Masahiko YOSHINAGA
Algebra, Topology, Combinatorics

The central object of my research is the hyperplane 
arrangement. A hyperplane arrangement is a 
collection of (n-1)-dimensional subspaces in a n-
dimensional space. Such objects appear many area 
of mathematics. Recently, I am mainly working in 
the following topics. 
(1) The freeness of the module of logarithmic vector 

fields and the construction of the basis. 
(2) Topology of the Milnor fiber and covering 

spaces. 
(3) Lattice points counting and the characteristic 

quasi-polynomials. 
(4) has connections with algebraic geometry and 

representation theory, and recently, is influenced 
by the study of quantum integrable systems. In 
(2), the icosidodecahedral arrangement (Figure) 
plays crucial role in recent studies. (3) has very 
rich connections with many other topics such as 
the theory of polytopes, arrangements of tori, 

and generalizations 
of the notion of Tutte polynomial for graphs and 
matroids. I am also interested in the notion of the 
magnitude of metric spaces introduced by 
categorists, and more generally, categorification of 
combinatorial phenomena. My interests also include 
the notion of “periods” that are real numbers with 
integral expressions. 
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SEMINARS and COLLOQUIA

●ALGEBRA

Number Theory
Seminar

Number theory seminar at Osaka
University is a seminar for faculty members
and graduate students of Osaka University
or researchers studying nearby Osaka
University. The subject of the seminar
covers wide topics concerning Number
theory, especially, algebraic number theory
and analytic number theory, modular forms,
arithmetic geometry, representation theory
and algebraic combinatorics. In this seminar,
we have reports of new results on these
topics and we exchange ideas and technics
of our research.

Algebraic Geometry
Seminar

The seminar is held two or three times a
month and each time one speaker gives a talk
of 90 minutes. After a talk, we have time for
questions and discussion. The purpose of the
seminar is to learn important results by active
researchers in Algebraic Geometry and
related fields, providing new perspectives on
the areas through lectures and discussions.
We also have survey lectures by experts for
graduate students and young researchers. We
have guest speakers not only from domestic
universities but also from foreign countries,
reflecting various aspects of the research area.

●GEOMETRY

Geometry Seminar

This seminar on Mondays is intended for
talks that will be of interest to a wide range
of geometers. Topics discussed include
Riemannian, complex, and symplectic
geometry; PDEs on manifolds; mathematical
physics.

Topology Seminar

This seminar focuses on various aspects of
low-dimensional topology. Our major topics
are 2-, 3-, and 4-dimensional manifold
theory, knot theory, geometric group theory,
hyperbolic geometry, Riemann surfaces, and
transformation groups. In addition to our
group members from the math department,
associated faculty members from other
departments and their graduate students are
also regular participants.
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●ANALYSIS

Seminar of
Differential Equations

Our seminar is held on every Friday from 15:30 to
17:00. One of the features of the seminar is to cover a
wide variety of topics on Qualitative Analysis of
Differential Equations. In fact, we are interested in
ordinary differential equations, partial differential
equations, linear differential equations, nonlinear
differential equations and so on. Lecturers are invited
from not only domestic universities but also foreign
countries and present us their original results or survey
of recent development of their fields. Furthermore, this
seminar provides opportunities to give a talk for our
colleagues and Ph.D. students majoring in differential
equations. Moreover, we should mention that we are
pleased to have participants from other universities
located closed to ours. In this way, we communicate
with each other and try to contribute to the progress of
the theory of differential equations.

Seminar on Probability

Probability theory group, the graduate school of
science and the graduate school of engineering
science, organizes "Seminar on Probability" on
Tuesday evening. The topics on this seminar are
the following:
(1) Probability theory
Stochastic analysis and infinite dimensional
analysis, problems arising from other areas of
mathematics such as real analysis, differential
equations and differential geometry.
(2) Research fields related to Probability theory,
Ergodic theory, dynamical system, stochastic
control and mathematical finance.

We welcome visits and talks by many
researchers from other universities, domestic and
abroad.

Dynamics and 
Fractals Seminar

Researchers and students working on various
fields related to dynamical systems and
fractals attend this seminar. We meet once a
month for approximately 90 minutes. Each
talk on his/her research is followed by
discussions among all participants.

●COLLOQUIA

Mathematics 
Colloquium

Colloquia take place on Monday afternoon
at 16 : 30 in Room E404. They are directed
toward a general mathematical audience. In
particular, one of the functions of these
Colloquia is to inform non-specialists and
graduate students about recent trends, ideas
and results in some area of mathematics, or
closely related fields.
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