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Summary

Mathematics, originally centered in the concepts of
number, magnitude, and form, has long been growing
since ancient Egyptian times to the 21st century.
Through the use of abstraction and logical reasoning, it
became an indispensable tool not only in natural
sciences, but also in engineering and social sciences.
Recently, the remarkable development of computers is
now making an epoch in the history of mathematics.

Department of Mathematics is one of the six
departments of Graduate School of Science, Osaka
University. It consists of 6 research groups, all of
which are actively involved in the latest developments
of mathematics. Our mathematics department has
ranked among the top seven in the country.

The department offers a program with 32 new
students enrolled annually leading to post-gradute
degrees of Masters of Science. The department also
offers a Ph.D. program with possibly 16 new students
enrolled annually.

Graduate courses are prepared so as to meet various
demands of students. Besides introductory courses for
first year students, a number of topics courses are
given for advanced students. Students learn more
specialized topics from seminars under the
guidance of thesis advisors.

Our department has our own library equipped with
about 500 academic journals and 50,000 books in
mathematics, both of which graduate students can use
freely. Also by an online system, students as well as
faculty members can look up references through
Internet.

Research Groups

Algebra, Geometry, Analysis, Global Geometry &
Analysis, Experimental Mathematics, Mathematical
Science.

Areas of Research

Number Theory, Ring Theory, Algebraic Geometry,
Algebraic Analysis, Partial Differential Equations,
Real Analysis, Differential Geometry, Complex
Differential Geometry, Topology, Knot Theory,
Discrete Subgroups, Transformation Groups, Complex
Analysis, Complex Functions of Several Variables,
Complex Manifolds, Discrete Mathematics, Probability
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Low-dimensional Geometry, Topology

My research is centered on surfaces (i.e. 2-
dimensional = manifolds), which  are
fundamental object in geometry and topology.

In particular, I am interested in the relations
between geometric  structures (locally
homogeneous structures) on surfaces, and
representations of the fundamental groups of
surfaces S (surface groups) into Lie groups G.

In the case that the Lie groups G = PSL(2,
R) or PSL(2, C) and that representations have
discrete images, beautiful theories have been
developed extensively, in particular, in
relation to the classification and the
deformation theorem  of 2- and 3 -
dimensional manifolds.
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| Shin-ichi DOI

Partial Differential Equations

Partial differential equations have their
origins in various fields such as mathematical
physics, differential geometry, and technology.
Among them I am particularly interested in
the partial differential equations that describe
wave propagation phenomena: hyperbolic
equations and dispersive equations. A typical
example of the former is the wave equation,
and that of the latter is the Schroedinger
equation. For many years I have studied basic
problems for these equations: existence and
uniqueness of solutions, structure of
singularities of solutions, asymptotic behavior
of solutions, and spectral properties. Recently
I make efforts to understand how the
singularities of solutions for Schroedinger
equations or, more generally, dispersive

equations propagate. The center of this
problem is to determine when and how the
singularities of solutions for the dispersive
equations can be described by the asymptotic
behavior of solutions for the associated
canonical equations.
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Complex Differential Geometry

A complex manifold is, locally. the world build out of
open subsets of complex Euclid spaces and
holomorphic functions on them. If two holomorphic
functions are defined on a connected set and coincide
on an open subset, then they coincide on the whole.
Complex manifolds inherit this kind of property from
holomorphic functions. That is, they are stiff and hard
in a sense. It seems to me that complex manifolds are
not metallically hard but have common warm feeling
with wood or bamboo, which have grain and gnarl.
Analytic continuations, as you learned in the course on
the function theory of complex variables, is analogous
to the process of growth of plants. Instead of
considering whole holomorphic functions, a class of
complex manifold can be build out of polynomials.
This is the world of complex algebraic manifolds, the
most fertile area in the world of complex manifolds.
To complex algebraic manifolds, since they are
algebraically defined, algebraic methods are of course
useful to study them. In certain cases, however,
transcendental methods (the word "transcendental”
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means only "not algebraic") are powerful. For example,
one of the simplest proof for the fundamental theorem
of algebra is given by the function theory of one
complex variable. These two methods have been
competing with each other since the very beginning of
the history of the study of complex manifolds. This
competing seems to me the prime mover of the
development of the theory of complex manifolds.
Comparing the world of complex manifold to the earth,
the world of complex algebraic manifold is to compare
to continents, and the boundary to continental shells.
The reason I wanted to begin to study complex
manifolds was I heard the Kodaira embedding theorem,
which characterizes complex algebraic manifolds in
the whole complex manifolds. The place I begin to
study is, however, something like the North Pole or the
Mariana Trench. Now the center of my interest is in
the study of complex algebraic manifolds by
transcendental methods. (Thus I have reached land but
I found this was a jungle.)

0 Osamu FUJINO

Algebraic Geometry

I am mainly interested in algebraic geometry.

More precisely, I am working on the
birational geometry of higher-dimensional
algebraic varieties. In the early 1980s,
Shigefumi Mori initiated a new approach for
higher-dimensional  birational  geometry,
which is now usually called the Minimal
Model Program or Mori theory. Unfortunately,
this beautiful approach has not been
completed yet. One of my dreams is to
complete the Minimal Model Program in full
generality. I am also interested in toric
geometry, Hodge theory, complex geometry,
and so on.
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| Kento FUIJITA

Algebraic Geometry

My research interest is algebraic geometry.
Especially, I am interested in birational
behavior of Fano varieties, a special class of
algebraic varieties. I have researched the
Mukai conjecture, the existence of certain
good models over some reducible varieties,
and an algorithm to classify log del Pezzo
surfaces (joint work with Kazunori Yasutake),
etc. Recently, I am interested in K-stability of
Fano varieties; I (and independently Chi Li)
gave a birational interpretation of K-stability
of Fano varieties.
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= Akio FUJIIWARA

Mathematical Engineering

"What is information?" Having this naive
yet profound question in mind, I have been
working mainly on noncommutative statistics,
information geometry, quantum information
theory, and algorithmic randomness theory.

One can regard quantum theory as a
noncommutative extension of the classical
probability  theory. Likewise, quantum
statistics is a noncommutative extension of
the classical statistics. It aims at finding the
best strategy for identifying an unknown
quantum object from a statistical point of
view, and is one of the most exciting research
field in quantum information science.

Probability theory is usually regarded as a
branch of analysis. Yet it is also possible to
investigate the space of probability measures

from a differential geometrical point of view.
Information geometry deals with a pair of
affine connections that are mutually dual
(conjugate) with respect to a Riemannian
metric on a statistical manifold. It is known
that geometrical methods provide us with
useful guiding principle as well as insightful
intuition in classical statistics. I am interested
in extending information geometrical
structure to the quantum domain, admitting
an operational interpretation.

I am also delving into algorithmic and game-
theoretic randomness from an information
geometrical point of view. Someday I wish to
reformulate thermal/statistical physics in
terms of algorithmic information theory.
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Geometry

My research interest is mostly in complex
and differential geometry, which are closely
related with algebraic geometry and
theoretical physics. My own research started
with special geometric structures such as
Calabi-Yau, hyperKaehler, G2 and Spin(7)
structures. These four structures exactly
correspond to special holonomy groups which
give rise to Ricci-flat Einstein metrics on
manifolds. It is intriguing that these moduli
spaces are smooth manifolds on which local
Torelli type theorem holds. In order to
understand these phenomena, I introduce a
notion of geometric structures defined by a
system of closed differential forms and
establish a criterion of unobstructed
deformations of structures. When we apply
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this approach to Calabi-Yau, hyperKaehler,
G2 and Spin(7) structures, we obtain a unified
construction of these moduli spaces. At
present I also explore other interesting
geometric structures and their moduli spaces.

“ Yasuhiro HARA

Topology

The field of my study is topology and,
especiallyy, I study the theory of
transformation groups. The Borsuk-Ulam
theorem is one of famous theorems about
transformation groups. This theorem is often
taken up as an application in elementary
lectures about the homology theory. The
content of the theorem is as follows: for every
continuous map from the n-dimensional
sphere to the n-dimensional Euclidian space,
there exists a point such that the map takes
the same value at the point and at the
antipodal point. A famous application of this
theorem is the following. "On the earth, there
is a point such that the temperature and
humidity at the point are the same as those at
the antipodal point." We consider a free

action of a group of order two on the n-
dimensional sphere to prove the Borsuk-Ulam
theorem. Then for any equivariant map (any
continuous map which preserves the structure
of the group action) from the sphere to itself,
the degree of the map is odd. By using this
fact, we obtain the Borsuk-Ulam theorem. In
the case of the Borsuk-Ulam theorem, we
consider spheres and free actions of a group
of order two. Actually, when we consider
other manifolds and actions of other groups,
there are some restrictions of homotopy types
of equivariant maps. I study such restrictions
of homotopy types of equivariant maps by
using the cohomology theory, and I study
relationships between homotopy types of
equivariant maps and topological invariants.
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" Nakao HAYASHI

Partial Differential Equations

I am interested in asymptotic behavior in time of
solutions to nonlinear dispersive equations (1 D
nonlinear Schreodinger. Benjamin-Ono,
Korteweg-de Vries, modified Korteweg-de Vries,
derivative nonlinear Schreodinger equations) and
nonlinear dissipative equations Complex Landau-
Ginzburg equations, Korteweg-de Vries equation
on a half line, Damped wave equations with a
critical nonlinearity). These equations have
important physical applications. Exact solutions of
the cubic nonlinear Schreodinger equations and
Korteweg-de Vries can be obtained by using the
inverse scattering method. Our aim is to study
asymptotic properties of these nonlinear equations
with general setting through the functional
analysis. We also study nonlinear Schreodinger
equations in general space dimensions with a
critical nonlinearity of order 1+2/n and the
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Hartree equation, which is considered as a critical
case and the inverse scattering method does not
work. On 1995, Pavel I. Naumkin and I started to
study the large time behavior of small solutions of
the initial value problem for the non-linear
dispersive equations and we obtained asymptotic
behavior in time of solutions and existence of
modified  scattering states to nonlinear
Schreodinger with critical and subcritical
nonlinearities. It is known that the usual scattering
states in L2 do not exist in these equations.
Recently, E.I.Kaikina and I are studying nonlinear
dissipative equations (including Korteweg-de
Vries) on a half line and some results concerning
asymptotic behavior in time of solutions are
obtained.

Nonlinear Partial Differential Equations

My research subject is nonlinear partial
differential equations. Especially, I am
interested in the global behavior of the
solutions to nonlinear dispersive equations or
nonlinear wave equations.

Dispersive equations describe the dispersion
phenomena of waves and are basic equations
in quantum physics. For example,
Schroedinger equation and Klein--Gordon
equation are typical dispersive equations,
which appear in quantum physics or
relativistic quantum field theory. Wave
equations express the properties of motion in
waves. Considering nonlinear interactions
between particles,

we can treat various physical phenomena,
for example, optics, superconductivity, and

Bose-Einstein condensate, by the nonlinear
dispersive or wave equations. Nonlinear
dispersive or wave equations have two
properties.

One is dispersion and the other is
nonlinearity. They conflict each other. Thus,
there are so many behaviors of the solutions. I
study this subject to find all behavior.
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= Takao IOHARA

Nonlinear Partial Differential Equations

My research interest is concemmed with
nonlinear partial differential equations
appearing in fluid mechanics. The current
research topic is the equations of the motion
of viscous incompressible fluid which has
free moving surface. The motion of viscous
incompressible fluid is governed by the
Navier-Stokes equations, which are not easy
to solve because of their nonlinearity. The
free moving surface adds another nonlinearity
to the problem and the study of it needs more
elaborate technique than the problems on
fixed domain.
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“ " Masashi ISHIDA

Differential Geometry

My research interest is in geometry,
particularly, interaction between topology and
differential geometry. For instance, I am
studying the nonexistence problems of
Einstein metrics and Ricci flow solutions on
4-manifolds by using the Seiberg-Witten
equations. I am also interested in the
geometry of the Yamabe invariant. The
computation of the Yamabe invariant for a
given manifold is a difficult problem in
general. By wusing the Seiberg-Witten
equations, I determined the exact value of the
Yamabe invariant for a large class of 4-
manifolds which includes complex surfaces
as special cases. Furthermore, I am also
interested in both the Ricci flow in higher
dimension and some generalized versions of
the Ricci flow like the

Ricci Yang-Mills flow. The Ricci flow was
first introduced by R. Hamilton in 1981 and
used as the main tool in G. Perelman's
solution of the Poincare conjecture in 2002.
Perelman introduced many new and
remarkable ideas to prove the conjecture. The
theory developed by Hamilton and Perelman
is now called the Hamilton-Perelman theory.
One of my recent interests is to investigate
geometric analytical properties of the
generalized versions of the Ricci flow from
the Hamilton-Perelman theoretical point of
view.
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Ring Theory

My research area is ring theory. A ring is an
algebraic structure which has addition, subtraction, and
multiplication. Typical examples are the set of integers,
the set of polynomials, and the set of n-by-n matrices. I
am particularly interested in noncommutative rings,
whose multiplication is noncommutative.

The notion of modules plays an important role in the
study of a ring. It is a generalization of vector spaces
appearing in linear algebra, but the only difference in
the definition is that the coefficients live in a ring, not
necessarily a field such as the field of real/complex
numbers. A vector space over an arbitrary coefficient
field is determined by the cardinality of its basis, up to
isomorphism. On the other hand, in the case of a ring,
even the nature of finitely generated modules highly
depends on the structure of the ring. For this reason,
we can investigate the ring by looking the behavior of
its modules. Especially for noncommutative rings, this
approach is often clearer than looking the ring itself
directly, and this leads us to deeper results.

An abelian category is a further generalization of the
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collection of modules. For each ring, the collection of
its modules has the structure of an abelian category,
and the ring can be almost recovered by the categorical
structure. A similar thing holds for the abelian category
consisting of coherent sheaves on an algebraic variety.
Hence the notion of abelian categories is a large
framework including (noncommutative) rings and
(commutative) algebraic varieties. I have investigated
general properties of certain classes of abelian
categories, and have revealed several new properties of
noncommutative rings as consequences. An advantage
of this general setting is that we can consider similar
problems for abelian categories which are not obtained
as module categories over rings. For example. the
functor category, which is the category consisting of
functors from a given abelian category, is again an
abelian category, and its structure reflects homological
properties of the original abelian category. I expect
that, by considering naive questions arising from
general theory of abelian categories in a specific
setting, such as the functor category, we can extend
existing theories to new directions.

| Hisashi KASUYA

Geometry

Until now, I have tried to extend the
geometry of nilpotent groups to the geometry
of solvable groups. More precisely, I have
studied the cohomology theory of
homogeneous spaces of solvable Lie groups
and complex geometry of non-Kihler
manifolds. It seems that the gap between
nilpotent groups and solvable groups is small.
But this gap contains a potential for geometry.
By the growing out of left-invariance and
non-triviality of local system cohomology, I
succeeded in giving a great surprise.

Recently, I am interested in the geometry
which relates to reductive or semi-simple
groups in contrast to nilpotent or solvable
groups In particular, I study non-abelian
Hodge theory, variations of hodge structures,

lattices in semi-simple Lie groups and locally
homogeneous spaces.
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= Soichiro KATAYAMA

Nonlinear Partial Differential Equations

My research interest is in nonlinear partial
differential equations. To be more specific, I
am working on the initial value problem for
nonlinear wave equations (in a narrow sense),
and also for partial differential equations
describing the nonlinear wave propagation in
a wider sense, such as Klein-Gordon
equations and Schroedinger equations.

The initial value problem is to find a
solution to a given partial differential
equation with a given state at the initial time
(a given initial value). However, in general, it
is almost impossible to give explicit

expression of solutions to nonlinear equations.

Therefore, in the mathematical theory, it is
important to investigate the existence of
solutions and also their behavior when they
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exist.

If we consider the initial value problem for
the equations mentioned above and if the
initial value is sufficiently small, the
existence of solutions up to arbitrary time (the
existence of global solutions) is mainly
determined by the power of the nonlinearity.
Especially, when the nonlinearity has the
critical power, the existence and non-
existence of global solutions depend also on
the detailed structure of the nonlinear terms. I
am interested in this kind of critical case, and
studying sufficient conditions for the
existence of global solutions and their
asymptotic behavior.

| Kazunori KIKUCHI

Differential Geometry

I have been studying topology of smooth four-
dimensional manifolds, in particular interested in
homology genera, representations of
diffeomorphism groups to intersection forms, and
branched coverings. Let me give a simple
explanation of what interests me the most, or
homology genera. The homology genus of a smooth
four-dimensional manifold M is a map associating to
each two-dimensional integral homology class [x] of
M the minimal genus g of smooth surfaces in M that
represent [x]. For simplicity, reducing the
dimensions of M and [x] to the halves of them
respectively, consider as a two-dimensional
manifold the surface of a doughnut, or torus T, and a
one-dimensional integral homology class [y] of T.
Draw a meridian and a longitude on T as on the
terrestrial sphere, and let [m] and [l] denote the
homology classes of T represented by the meridian
and the longitude respectively. It turns out that [y] =
a[m] + b[1] for some integers a and b, and that [y] is

represented by a circle immersed on T with only
double points. Naturally interesting then is the
following question: what is the minimal number n of
the double points of such immersions representing
[y]? Easy experiments would tell you that, for
example, n = 0 when (a,b) = (1,0) or (0,1) and n =1
when (a,b) = (2.0) or (0.2). In fact, it is proved with
topological methods that n = d—1, where d is the
greatest common divisor of a and b. It is the minimal
number n for T and [y] that corresponds to the
minimal genus g for M and [x]. The study on the
minimal genus g does not seem to proceed with only
topological methods; it sometimes requires methods
from differential geometry, in particular methods
with gauge theory from physics; though more
difficult, it is more interesting to me. I have been
tackling the problem on the minimal genus g with
such a topological way of thinking as to see things
as if they were visible even though invisible.
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Topology, Dynamical Systems

I am interested in the mapping class groups on
surfaces. The most common elements in the mapping
class groups are so called pseudo-Anosovs. I try to
understand which pseudo-Anosovs are the most simple
in the mapping class groups. I describe my goal more
clearly. Pseudo-Anosovs possess many complicated
(and beautiful) properties from the view points of the
dynamical systems and the hyperbolic geometry. There
are some quantities which reflect those complexities of
pseudo-Anosovs. Entropies and volumes (i.e., volumes
of mapping tori) are examples. We fix the topological
type of the surface and we consider the set of entropies
(the set of volumes) coming from the pseudo-Anosov
elements on the surface. Then one can see that there
exists a minimum of the set. That is, we can talk about
the pseudo-Anosovs with the minimal entropies
(pseudo-Anosovs with the minimal volumes). I would
like to know which pseudo-Anosov achieves the
minimal entropy with the minimal volume. Recently,
Gabai, Meyerhoff and Milley determined hyperbolic
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closed 3-manifolds and hyperbolic 3-manifolds with
one cusp with very small volume. Intriguingly, the
result implies that those hyperbolic 3-manifolds are
obtained from the single hyperbolic 3-manifold by
Dehn filling. Some experts call the single 3-manifold
the ““magic manifold". Said differently, the magic
manifold is a parent manifold of the hyperbolic
manifolds with very small volume. It seems likely that
we have the same story in the world of pseudo-
Anosovs with the very small entropies. This conjecture
is based on the recent works of myself and other
specialists. We note that there are infinitely many
topological types of surfaces (for example, the family
of closed orientable surface with genus g). For the
mapping class group of each surface we know that
there exists a pseudo-Anosov element with the
minimal entropy. Thus, of course, there exist infinitely
many pseudo-Anosov elements with the minimal
entropies. It might be true that all minimizers are
obtained from the magic 3-manifold. When I work on
this project, I sometimes think of our universe.

| Kazuhiro KONNO

Complex Algebraic Geometry

Algebraic Geometry is a branch of
Mathematics studying, by means of algebraic
methods, the geometry of figures defined by
simultaneous algebraic equations in several
variables. You may say that you are not
familiar with Algebraic Geometry. But you
already know many beautiful plane curves
such as an ellipse, a parabola and a
hyperbola; they are in fact our jewels ---
algebraic varieties. As you learned in high
school, various problems on the geometry of
plane curves, e.g., how two curves intersect
or contact, can be solved by considering
simultaneous equations. Studying figures in
such a way is nothing but the algebraic
geometry. Algebraic equations, however, are
not so simple; it is not known so far even how

to solve simultaneous quadratic equations,
whilst the method for linear equations are
well established as you learned in the course
of Linear Algebra, and many beautiful
algebraic varieties are usually given by
quadratic equations. Because in general we
cannot draw figures of varieties on the black
board, unlike ellipses or parabolas, it requires
such and such training in order to be able to
touch and feel them. For example, my
favorite algebraic surfaces are 4 dimensional
objects and, therefore, cannot be realized in
our 3 dimensional space. If you are interested
in meeting them in reality, the best way is to
start and enjoy learning Algebraic Geometry.
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Department of Mathematics

Topology

My research theme is mainly mapping class
groups of surfaces (including non-orientable
surfaces) and 3-dimensional handlebodies. In
particular, I am interested in exploring them
from the viewpoints of geometric group
theory. Geometric group theory is a new field
among a lot of areas of mathematics and it is
progressing significantly. One of the most
important problems in geometric group
theory is classifying finitely generated groups
by “quasi-isometries”. Two finitely generated
groups are quasi-isometric if roughly
speaking, their word metrics are the same up
to linear functions. An interesting part of the
geometric group theory is that the properties
of the infinite groups are revealed one by one
by measuring with a coarse scale of quasi-
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isometries, but not isometries. Currently,
groups which are quasi-isometric to mapping
class groups have hardly been found. Then
what I am wondering is the question "Which
groups are quasi-isometric to the mapping
class group?". Based on this big theme, I
would like to elucidate properties of mapping
class groups, and deepen their understanding.

“ | Yoshihiko MATSUMOTO

Differential Geometry, Several Complex Variables

Working on differential geometry, partly with some flavor
of function theory of several complex variables. I've been
mainly studying geometry of <‘“asymptotically complex
hyperbolic spaces,” with emphasis on a partial differential
equation called Einstein’s equation on them. While being a
generalization of geometry of bounded strictly pseudoconvex
domains in function theory of several complex variables, it’s
beyond the scope of the field of complex geometry. Based on
this experience, I'm now aiming toward some more general
theory that applies to other “spaces that converge to ones
with much symmetry,” which are called “asymptotically
symmetric spaces.”

Asymptotically hyperbolic spaces, which are the most basic
examples of asymptotically symmetric spaces, are lacking
symmetries such as the homogeneity or the isotropicity of the
genuine hyperbolic spaces in the strict sense. However, as a
point in the space moves more away from a fixed one, its
neighborhood looks more like an open set of the hyperbolic
space. Recall the “natural” conformal structure on the sphere
at infinity of the hyperbolic space—the boundary at infinity
of an asymptotically hyperbolic space is equipped with a
conformal structure in the same way. In the case of
asymptotically complex hyperbolic spaces, whose model has

little less isotropicity than that of the hyperbolic space, the
associated geometric structure on the boundary at infinity is
the CR (Cauchy—Riemann) structure.

The fundamental question of geometry of asymptotically
symmetric spaces is the following: what property of the
space reflects the geometric structure at infinity and the
topology of the space, and in what way? This includes the
question whether or not there is a space with some certain
property under a given condition on the structure at infinity
and the topology. The existence problem of Einstein metrics
is a typical example.

Although asymptotically hyperbolic spaces have been
studied for several decades, many fundamental questions
remain unsolved. And. if we think of understandings from
the general viewpoint of geometry of asymptotically
symmetric spaces. our field still seems to be kind of a
wilderness. I"d cultivate it by going back and forth between
analyses on special cases and abstract considerations.
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| Haruya MIZUTANI

Partial Differential Equations

The Schrodinger equation is the fundamental
equation of physics for describing quantum
mechanical behavior. I am working on the
mathematical theory of the Schrodinger
equation and my research interest includes
scattering theory, semiclassical analysis,
spectral theory, geometric microlocal analysis
and so on. My current research has focused
on various estimates such as decay or
Strichartz  inequalities, which  describe
dispersive or smoothing properties of
solutions and are fundamental for studying
linear and nonlinear dispersive equations. In
particular, I am interested in understanding
quantitatively the influence of the geometry
of associated classical mechanics on the
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behavior of quantum mechanics, via such
inequalities.

Schrédinger

Functional
Analysis

Equation

+ | Takehiko MORITA

Ergodic Theory, Probability Theory, Dynamical System

I specialize in ergodic theory. To be more

precise, I am studying statistical behavior of
dynamical systems via thermodynamic
formalism and its applications.
Ergodic theory is a branch of mathematics
that studies dynamical systems with
measurable structure and related problems. Its
origins can be found in the work of
Boltzmann in the 1880s which is concerned
with the so called Ergodic Hypothesis.
Roughly speaking the hypothesis was
introduced in order to guarantee that the
system considered is ergodic i.e. the space
averages and the long time averages of the
physical observables coincide. Unfortunately,
it turns out that dynamical systems are not
always ergodic in general. Because of such a

background, the ergodic problem (= the
problem to determine a given dynamical
system is ergodic or not) has been one of the
important subjects since the theory came into
existence. In nowadays ergodic theory has
grown to be a huge branch and has
applications not only to statistical mechanics,
probability, and dynamical systems but also
to number theory, differential geometry,
functional analysis, and so on.
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+. Tomonori MORIYAMA

Number Theory

I am interested in automorphic forms of
several variables. A classical automorphic
(modular) form of one variable is a
holomorphic function on the upper half plane
having certain symmetry. Such functions
appear in various branches of mathematics,
say notably number theory, and have been
investigated by many mathematicians.

There is a family of manifolds called
Riemannian symmetric spaces, which is a
higher-dimensional generalization of the
upper half plane. The set of isometries of a
Riemannian symmetric space forms a Lie
group G. Roughly speaking, an automorphic
form of several variables is a function on a
Riemannian symmetric space satisfying the
relative invariance under an "arithmetic"
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subgroup of G and certain differential
equations arising from the Lie group G.
Studies on automorphic forms of several
variables started from C. L. Siegel's works in
1930s and have been developed through
interaction with mathematics of the day.

Currently I am working on two themes: (i)
the zeta functions attached to automorphic
forms and (ii) explicit constructions of
automorphic ~ forms, by  employing
representation theory of reductive groups
over local fields. One of the joy in studying
this area is to discover a surprisingly simple
structure among seemingly complicated
objects.

“ " Hiroaki NAKAMURA

Number Theory

Theory of equations has a long history of
thousands of years in mathematics, and,
passing publication of the famous Cardano-
Ferrari formulas in Italian Renaissance,
Galois theory in the 19th century established
a necessary and sufficient condition for an
algebraic equation to have a root solution in
terms of its Galois group. My research
interest is a modern version of Galois theory,
especially its arithmetic aspects. In the last
century, the notion of Galois group was
generalized to “arithmetic fundamental
group"” by Grothendieck, and Belyi's
discovery (of an intimate relationship
between Galois groups of algebraic numbers
and fundamental groups of topological loops
on hyperbolic curves) undertook a new area

of "anabelian geometry". Here are important
problems of controlling a series of covers of
algebraic curves and their moduli spaces, and
Thara's theory found deep arithmetic
phenomena therein. Related also to
Diophantus questions on rational points,
fields of definitions and the inverse Galois
problem, nowadays, there frequently occur
important developments as well as new
unsolved problems. I investigate these topics,
and hope to find new perspectives for deeper
understanding of the circle of ideas.
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. Tadashi OCHIAI

Arithmetic Geometry

I study Number theory and Arithmetic
Geometry. In the research of Number theory,
we study not only properties of integers and
rational numbers, but every kinds of problems
related to integers. For example, we are very
much interested in rational points of algebraic
varieties defined over the field of rational
numbers. Number theory has a long history
and we had a great progress, which is typical
in the proof of Fermat's conjecture by Wiles
and the proof of Mordell's conjecture by
Faltings in 20th century. At the beginning of
my career, my subject of research was the
study of the l-adic etale cohomology of
varieties over local fields. More recently, I am
interested in the study of special values of
zeta functions via the philosophy of [wasawa
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theory. Precisely speaking, my project is to
study Iwasawa theory from the view point of
Galois deformations. I think that Number
theory is full of surprise as we see a lot of
unexpected relations between different kinds
of objects.

| Hiroyuki OGAWA

Algebraic Number Theory

I have an interest in periodic objects.
Expanding rational numbers into decimal
numbers is delightful. The decimal number
expansion becomes the repeat of a sequence
of some integers. I have an appetite for
continued fraction expansions, never get tired
to calculate it, and want to find continued
fractions with sufficiently long period. It is on
the way to Gauss' class number one
conjecture. Recently, I am studying iteration
of rational functions. For a rational function
g(x) with rational coefficients, a complex
number z with g(g(...g(z)...))=z is called a
periodic point on g(x) and is an algebraic
number. I expect that number theoretical
properties which such an algebraic number z
has is described by the rational function g(x).

This does not seem to work out anytime, but
one can find many rational functions g(x) that
describe the Galois group, the class number,
the class group, and so on of a periodic point
of g(x). I think that this should be surely
useful, and calculate like these every day.
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Department of Mathematics

Algebraic Geometry

When I was a student, I thought I knew number
theory, geometry. but algebraic geometry was
unfamiliar for me. One may say algebra and
geometry are different fields, but you know the
theory of quadratic curves and are aware of
efficiency of algebraic methods for solving
geometric problems. The field called algebraic
geometry lies on such a line. When [ was studying
the theory of quadratic curves, I wondered, "Why do
they only treat special equations like quadratics?
There are many other equations. But how can they
be treated?”. When I discovered the answer might lie
on this field, I decided to enter this field. The easiest
non-trivial equation has the form such as "the second
power of y = an equation of x of degree three",
which defines the so called "an elliptic curve". The
theory of elliptic curve was one of the greatest
achievements of nineteenth century and keeps
developing today. Recently, the famous Fermat's
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conjecture has been solved using this theory. The
theory of quadratic and elliptic curves involve only
two variables x, y. It is natural to think of the
equations with many variables. In fact the algebraic
geometers are expanding the theory, curves fto
surfaces and higher dimensional cases these days.
Two dimensional version of elliptic curves are called
K3 surfaces, which can be treated only using the
theory of linear algebra(!) thanks to the Torelli's
theorem. These days, the 3-dimensional versions,
which is called Calabi-Yau threefolds are fascinating
for algebraic geometers like me. Somehow
theoretical physicists are also interested in this field.
To study Calabi-Yaus by specializing these to ones
with a fiber structure (on which field, I'm now
working) might be one method, but I have been
thinking that a new theory is needed. These days,
many intriguing new theories have appeared and one
may find more!

o Ken’ichi OHSHIKA

Topology, Discrete Groups

I have been studying 3-manifolds and discrete
groups. Although 3-manifold topology has a long
tradition of research. which started with the
pioneering work of Poincaré back in the 19th
century. it is still one of the most active fields in
topology. In the 1980's, Thurston published a
famous conjecture called the geometrisation
conjecture, stating that all compact 3-manifolds
would be decomposed canonically into geometric
pieces each of which has a locally homogeneous
metric. Recently Perelman claimed that he has
succeeded in solving this conjecture. If his claim
is true, then the research of 3-manifolds is reduced
to that of hyperbolic ones, which have metrics of
constant sectional curvature -1. I am studying
hyperbolic 3-manifolds from the viewpoint of
Kleinian groups which have been an important
topic in complex analysis. Kleinian groups are
typical examples of discrete groups in Lie groups.

More generally, it is in vogue to study groups as
geometric objects regarding them as discrete
groups by endowing them with the word metric,
and I am also interested in this field. In particular,
such things as hyperbolic groups invented by
Gromov or isometric group actions on R-trees are
closely related to the study of Kleinian groups.
More general objects called automatic groups,
whose operations are govemed by automata, are
also important objects in geometric group theory.
Although geometric group theory is a relatively
new field, it is promised to flourish in the near
future.
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theory of quadratic curves and are aware of
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geometric problems. The field called algebraic
geometry lies on such a line. When [ was studying
the theory of quadratic curves, I wondered, "Why do
they only treat special equations like quadratics?
There are many other equations. But how can they
be treated?”. When I discovered the answer might lie
on this field, I decided to enter this field. The easiest
non-trivial equation has the form such as "the second
power of y = an equation of x of degree three",
which defines the so called "an elliptic curve". The
theory of elliptic curve was one of the greatest
achievements of nineteenth century and keeps
developing today. Recently, the famous Fermat's
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conjecture has been solved using this theory. The
theory of quadratic and elliptic curves involve only
two variables x, y. It is natural to think of the
equations with many variables. In fact the algebraic
geometers are expanding the theory, curves fto
surfaces and higher dimensional cases these days.
Two dimensional version of elliptic curves are called
K3 surfaces, which can be treated only using the
theory of linear algebra(!) thanks to the Torelli's
theorem. These days, the 3-dimensional versions,
which is called Calabi-Yau threefolds are fascinating
for algebraic geometers like me. Somehow
theoretical physicists are also interested in this field.
To study Calabi-Yaus by specializing these to ones
with a fiber structure (on which field, I'm now
working) might be one method, but I have been
thinking that a new theory is needed. These days,
many intriguing new theories have appeared and one
may find more!
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Topology, Discrete Groups

I have been studying 3-manifolds and discrete
groups. Although 3-manifold topology has a long
tradition of research. which started with the
pioneering work of Poincaré back in the 19th
century. it is still one of the most active fields in
topology. In the 1980's, Thurston published a
famous conjecture called the geometrisation
conjecture, stating that all compact 3-manifolds
would be decomposed canonically into geometric
pieces each of which has a locally homogeneous
metric. Recently Perelman claimed that he has
succeeded in solving this conjecture. If his claim
is true, then the research of 3-manifolds is reduced
to that of hyperbolic ones, which have metrics of
constant sectional curvature -1. I am studying
hyperbolic 3-manifolds from the viewpoint of
Kleinian groups which have been an important
topic in complex analysis. Kleinian groups are
typical examples of discrete groups in Lie groups.

More generally, it is in vogue to study groups as
geometric objects regarding them as discrete
groups by endowing them with the word metric,
and I am also interested in this field. In particular,
such things as hyperbolic groups invented by
Gromov or isometric group actions on R-trees are
closely related to the study of Kleinian groups.
More general objects called automatic groups,
whose operations are govemed by automata, are
also important objects in geometric group theory.
Although geometric group theory is a relatively
new field, it is promised to flourish in the near
future.
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| Shin-ichi OHTA

Differential Geometry, Geometric Analysis

My research subject is geometry, especially
differential geometry and geometric analysis
related to analysis and probability theory. A
keyword of my research is “curvature” which
represents how the space is curved. As seen in
the difference between the sums of interior
angles of triangles in a plane and a sphere, the
behavior of the curvature influences various
properties of the space (the shapes of
triangles, the volume growth of concentric
balls, how heat propagates, the behavior of
entropy, etc.). This powerful and versatile
conception has been applied to Riemannian
manifolds, metric spaces, Finsler manifolds,
Banach spaces, as well as discrete objects
such as graphs.
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| Shinnosuke OKAWA

Algebraic Geometry

Geometric objects which are described as the

collection of solutions of algebraic equation(s), such
as ellipses, parabolas, and hyperbolas, are called
algebraic varieties. These are the subject of study in
the field of algebraic geometry, and I have been
working on various problems in this area.
In the early days, I was studying topics about
Geometric Invariant theory (GIT) and birational
geometry. GIT is a theory about quotients of
algebraic varieties by algebraic group actions, and in
birational geometry certain  "transformation
(modification)" of algebraic varieties is studied. The
definition of a GIT quotient depends on a choice of a
parameter, which is called a stability condition, and
one obtains different quotients by changing the
stability conditions. Typically these quotients are all
birational to each other, and in good situations it
turns out that the birational geometry of the quotient
variety is complete described in this way. I have
proved several properties of this class of varieties.

Recently I am mainly investigating algebraic
varieties from categorical points of view. One of my
interests is the "irreducible decomposition" of the
derived category of coherent sheaves. This in fact is
motivated by birational geometry, and important
techniques of birational geometry, €.g. the canonical
bundle formula, are used. I am also studying non-
commutative deformations of algebraic varieties and
their moduli spaces. Derived categories again plays
a central role, but other interesting topics such as
GIT. geometry of elliptic curves, and birational
transformation of non-commutative algebraic
varieties also show up. Through the study, I found
an interesting and unexpected relationship with an
old invariant theory which goes back to the end of
the 19th century. I am also trying to understand to
what extent the derived category of coherent sheaves
keeps the geometric information of the original
variety.
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| Yuichi SHIOZAWA

Probability Theory

My research area is probability theory. In
particular, I am working on the sample path
analysis for symmetric Markov processes
generated by Dirichlet forms. Dirichlet form
is defined as a closed Markovian bilinear
form on the space of square integrable
functions. The theory of Dirichlet forms plays
important roles in order to construct and
analyze symmetric Markov processes.

I am interested in the relation between the
analytic information on Dirichlet forms and
the sample path properties of symmetric
Markov processes. I am also interested in the
global properties of branching Markov
processes, which are a mathematical model
for the population growth of particles by
branching.
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| Hiroshi SUGITA

Probability Theory

I specialize in Probability theory. In particular, I
am interested in infinite dimensional stochastic
analysis, Monte-Carlo method, and probabilistic
number theory. Here I write about the Monte-
Carlo method. One of the advanced features of the
modern probability theory is that it can deal with
"infinite number of random variables". It was E.
Borel who first formulated "infinite number of
coin tosses" on the Lebesgue probability space.
i.e.. a probability space consisting of [0,1)-interval
and the Lebesgue measure. It is a remarkable fact
that all of useful objects in probability theory can
be constructed upon these "infinite number of coin
tosses". This fact is essential in the Monte-Carlo
method. Indeed. in the Monte-Carlo method, we
first construct our target random variable S as a
function of coin tosses. Then we compute a
sample of S by plugging a sample sequence of

coin tosses --- . which is computed by a pseudo-
random generator, --- into the function. Now, a
serious problem arises: How do we realize a
pseudo-random generator? Can we find a perfect
pseudo-random generator? People have believed it
to be impossible for a long time. But in 1980s, a
new notion of "computationally secure pseudo-
random generator” let people believe that an
imperfect pseudo-random generator has some
possibility to be useful for practical purposes.
Several years ago, I constructed and implemented
a perfect pseudo-random generator for Monte-
Carlo integration, i.e., one of Monte-Carlo
methods which computes the mean values of
random variables by utilizing the law of large
numbers.
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- Hideaki SUNAGAWA

Partial Differential Equations

My research field is Partial Differential
Equations of hyperbolic and dispersive type.
They arise in mathematical physics as
equations describing wave propagation, so
there are a wealth of applications and plenty
of problems to be studied. Of my special
interest is the nonlinear interactions of
hyperbolic waves. Since the analysis of
nonlinear PDE is still a developing subject,
there are few general conclusions about that.
To put it another way, it means that there are
possibilities for coming across wonderful
phenomena which no one has ever seen
before.
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| Atsushi TAKAHASHI

Complex Geometry, Algebra, Mathematical Physics

My current interests are mathematical aspects of
the superstring theory. in particular, algebraic
geometry related to the mirror symmetry.

More precisely, I am studying homological
algebras and moduli problems for categories of
"D-branes" that extend derived categories of
coherent sheaves on algebraic varieties.

Indeed, I am trying to construct Kyoji Saito's
primitive forms and their associated Frobenius
structures from triangulated categories defined via
matrix factorizations attached to weighted
homogeneous polynomials.

For example, I proved that the triangulated
category for a polynomial of type ADE is
equivalent to the derived category of finitely
generated modules over the path algebra of the
Dynkin quiver of the same type.

Now, I extend this result to the case when the
polynomial corresponds to one of Arnold's 14

exceptional singularities and then showed the
"mirror symmetry" between weighted
homogeneous singularities and finite dimensional
algebras, where a natural interpretation of the
"Arnold's strange duality" is given.

Representation

Mirror
Symmetry

Algebra Gecmatry

Graduate School of Science
2018-2019



Department

Department of Mathematics

. Naohito TOMITA

Real Analysis

My research field is Fourier analysis, and I
am particularly interested in the theory of
function spaces. Fourier series were
introduced by J. Fourier(1768-1830) for the
purpose of solving the heat equation. Fourier
considered as follows:"Trigonometric series
can represent arbitrary periodic functions".
However, in general, this is not true. Then,
we have the following problem: "When can
we write a periodic function as an infinite (or
finite) sum of sine and cosine functions?".
Lebesgue space which is one of function
spaces plays an important role in this classical
problem. Here Lebesgue space consists of
functions whose p-th powers are integrable.
In this way, function spaces are useful for
various mathematical problems. As another
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example, modulation spaces were recently
applied to pseudodifferential operators which
are important tool for partial differential
equations, and my purpose is to clarify their
relation.
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| Kenkichi TSUNODA

Probability Theory

My research field is probability theory. In
particular I am interested in problems related
to so-called "Hydrodynamic limit", which is a
certain type of space-time scaling limits.
Hydrodynamic limit means a method which
determines a macroscopic quantity of a
microscopic system such as particles systems.
To tackle a difficult problem related to
Hydrodynamic limit, it is necessary to invoke
results on functional analysis or partial
differential equations, and to use specific
arguments for particle systems and wide
knowledge of probability theory.
Hydrodynamic limit is formulated as Law of
large numbers for a macroscopic quantity
such as the number of particle systems or the
current for a microscopic system. I am

working on related Central limit theorem and
Large deviation principle.

In recent years, my another interest is
Random topology, which has arisen from the
development of Topological data analysis in
applied mathematics. I am working on this
new research area with my probabilistic
technique although this theme is not related
to above Hydrodynamic limit deeply.
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# | Motoo UCHIDA

Algebraic Analysis, Microlocal Analysis

My research field is algebraic analysis and
micro-local analysis of partial differential
equations. The view point of micro-local
analysis (with cohomology) is a new
important point of view in analysis
introduced by Mikio Sato in the early 1970s.
Thinking from a micro-local point of view
helps us to well understand a number of
mathematical phenomena (at least for PDE)
and to find a simple hidden principle behind
them. Even for some classical facts (scattered
as well known results) we can sometimes find
a new unified way of understanding from a
micro-local or algebro-analytic viewpoint.
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| Takao WATANABE

Algebraic Number Theory

My current interest is the Geometry of Numbers. The
Geometry of Numbers was founded by Hermann
Minkowski in the beginning of the 20th century.
Minkowski proved a famous theorem known as
"Minkowski's convex body theorem", which asserts
that "there exists a non-zero integer point in V if V is
an o-symmetric convex body in the n-dimensional
Euclidean space whose volume is greater than 2°n".
When V is an ellipsoid, this theorem is refined as
follows. Let A be a non-singular 3 by 3 real matrix and
K(c) the ellipsoid consisting of points x such that the
inner product (Ax, Ax) is less than or equal to ¢ > 0.
For i = 123, we define the constant ¢ i as the
minimum of ¢ > 0 such that K(c) contains i linearly
independent integer points. Then ¢ 1, ¢ 2, ¢ 3
satisfies the inequality ¢_1c_2c 3 <= 2|det A|*2. This
is called "Minkowski's second theorem". A similar
inequality holds for any n-dimensional ellipsoid.
Namely, if A is a non-singular n by n real matrix and
K(c) is the n-dimensional ellipsoid defined by (Ax,
AX) <=c¢, we can define ¢_ifori=1,2, ..., nas the

minimum of ¢ > 0 such that K(c) contains i linearly
independent integer points. Then the inequality
¢ _lc 2..c_n <= h(n)/det A/*2 holds for any A. The
optimal upper bound h(n) does not depend on A, and is
called Hermite's constant. We know h(2) = 4/3, h(3) =
2. h(4)=4, ..., h(8) = 256, but h(n) for a general n is not
known. A recent major topic of this research area is the
determination of h(24). In 2003, Henry Cohn and
Abhinav Kumar proved that h(24) = 4724,
(Incidentally, h(3) was essentially determined by
Gauss in 1831, and h(8) was determined by Blichfeldt
in 1953. If you would determine h(9). then your name
would be recorded in treatises on the Geometry of
Numbers.) Now I study (an analogue of) the Geometry
of Numbers on algebraic homogeneous spaces. One of
my results is a generalization of Minkowski's second
theorem to a Severi-Berauer variety. In addition, [ am
interested in the reduction theory of arithmetic
subgroups, automorphic forms, the algebraic theory of
quadratic forms and Diophantine approximation.
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. Katsutoshi YAMANOI

Complex Analysis, Complex Geometry

My research interest is Complex geometry
and Complex analysis, both from the view
point of Nevanlinna theory. In the geometric
side, I am interested in the conjectural second
main theorem in the higher dimensional
Nevanlinna theory for entire holomorphic
curves into projective manifolds. Also I am
interested in the behavior of Kobayashi
pseudo-distance of projective manifolds of
general type. These problems are related to an
algebraic geometric problem of bounding the
canonical degree of algebraic curves in
projective manifolds of general type by the
geometric genus of the curves. In the analytic
side, I am interested in classical problems of
value distribution theory for meromorphic
functions in the complex plane.
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# | Seidai YASUDA

Number Theory

Systems of polynomials with integral coefficients are
studied in number theory. It is often very difficult to
find the integral solutions of such a system. Instead, we
simultaneously deal with the solutions in wvarious
commutative rings. The solutions in various rings
forms a scheme, which provides geometric methods
for studying the system of polynomials.

Hasse-Weil L-functions of an arithmetic scheme are
defined using geometric cohomology. I am interested
in the special values of these L-functions. The special
values are believed to be related to motivic
cohomologies, which are defined by using algebraic
cycles or algebraic K-theory and are usually they hard
to know explicitly. It is a very deep prediction to
expect that such abstract objects should be related to
more concrete L-functions.

It is expected that motives are related to automorphic
representations. The expectation is important since we
have various methods for studying automorphic L-
functions. Some relations between motives and

automorphic representations are realized by using
Shimura varieties. In a joint work with Satoshi Kondo,
I have proved a equality relating motivic cohomologies
and special values of Hasse-Weil L-functions for some
function field analogues of Shimura varieties.

Hasse-Weil L-functions are defined via some Galois
representations. We need to study such Galois
representations. For some technical reasons it is
important to study Galois representations of p-adic
fields with p-adic coefficients, and p-adic Hodge
theory provides some tools for studying such
representations. For recent years there have been much
development in p-adic Hodge theory, and a lot of
beautiful theories have been constructed. However the
theory is not fully established and many aspects of the
theory remains mysterious. I am now trying to make
the integral p-adic Hodge theory more convenient for
practical study.
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® ALGEBRA
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Number Theory
Seminar

o
Mathematics

Number theory seminar at Osaka University
is a seminar for faculty members and
graduate students of Osaka University or
researchers studying nearby Osaka University.
The seminar is usually held on Fridays, once
every two weeks. The subject of the seminar
covers wide topics concerning Number theory,
especially, algebraic number theory and
analytic number theory, modular forms,
arithmetic geometry, representation theory
and algebraic combinatorics. In this seminar,
we have reports of new results on these topics
and we exchange ideas and technics of our
research.

® GEOMETRY

Department
f

Geometry Seminar

o
Mathematics

This seminar on Mondays is intended for
talks that will be of interest to a wide range of
geometers. Topics discussed include Riemann
-ian, complex, and symplectic geometry;
PDEs on manifolds; mathematical physics.

Department of Mathematics

Department

Algebraic Geometry
Seminar

o
Mathematics

The seminar is held two or three times a
month and each time one speaker gives a talk
of 90 minutes. After a talk, we have time for
questions and discussion. The purpose of the
seminar is to learn important results by active
researchers in Algebraic Geometry and
related fields, providing new perspectives on
the areas through lectures and discussions.
We also have survey lectures by experts for
graduate students and young researchers. We
have guest speakers not only from domestic
universities but also from foreign countries,
reflecting various aspects of the research area.
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f

Topology Seminar

o
Mathematics

In our research group of topology, we hold
three kinds of specialised seminars regularly:
the low-dimensional topology seminar
focusing on the knot theory, three-manifolds,
and hyperbolic geometry; the seminar on
transformation groups; and the seminar on 4-
manifolds and complex surfaces.

We also sometimes hold a topology seminar
encompassing all fields of topology, where all
of us meet together.
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Department

Seminar of
Differential Equations

of
Mathematics

Our seminar is held on every Friday from 15:30 to
17:00. One of the features of the seminar is to cover
a wide variety of topics on Qualitative Analysis of
Differential Equations. In fact, we are interested in
ordinary differential equations, partial differential
equations, linear differential equations, nonlinear
differential equations and so on. Lecturers are
invited from not only domestic universities but also
foreign countries and present us their original results
or survey of recent development of their fields.
Furthermore, this seminar provides opportunities to
give a talk for our colleagues and Ph.D. students
majoring in differential equations. Moreover, we
should mention that we are pleased to have
participants from other universities located closed to
ours. In this way, we communicate with each other
and try to contribute to the progress of the theory of
differential equations.
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Dynamics and
Fractals Seminar

o
Mathematics

Researchers and students working on
various fields related to dynamical systems
and fractals attend this seminar. We meet
once a month for approximately 90 minutes.
Each talk on his/her research is followed by
discussions among all participants.

Department of Mathematics

Department
f

Seminar on Probability

o
Mathematics

Probability theory group, the graduate school of
science and the graduate school of engineering
science, organizes "Seminar on Probability" on
Tuesday evening. The topics on this seminar are
the following:

(1) Probability theory

Stochastic analysis and infinite dimensional
analysis, problems arising from other areas of
mathematics such as real analysis, differential
equations and differential geometry.

(2) Research fields related to Probability theory,
Ergodic theory, dynamical system, stochastic
control and mathematical finance.

We welcome visits and talks by many
researchers from other universities. domestic and
abroad.

® COLLOQUIA
[o)epartmer-vt Mathematics
Mathematics Colloquium

Colloquia take place on Monday afternoon
at 16 : 30 in Room E404. They are directed
toward a general mathematical audience. In
particular, one of the functions of these
Colloquia is to inform non-specialists and
graduate students about recent trends, ideas
and results in some area of mathematics, or
closely related fields.
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