宇宙地球科学専攻

Department of Earth and Space Science

概要

近年めざましく発展しつつある宇宙地球科学に対して 1995年に大学院修士課程宇宙地球科学専攻が理学 研究科に設立されました。(1)宇宙惑星進化学講座、 (2)極限物質学講座、(3)自然物質学講座の三つの大 講座からなっています。それらには基礎宇宙物理学、X 線天文学、赤外線天文学、惑星科学、地球物理化学、固体 地球科学、極限生物学などが含まれています。1996年 には大学院重点化により入学定員も28名に増員されまし た。博士課程は1997年から発足しました。

本専攻の教育と研究は基礎物理を重視しており、字 宙地球科学の実験的及び理論的研究は物理学専攻と緊 密な関連をもって行われています。本専攻の目的は字 宙や惑星、地球内部また色々な極限状態等で、幅広い 時間と空間座標で起こる自然現象を、新しく開発した 手法を用いて解明することにあります。そして、伝統 的な天文学や地球物理学とは異なった視点から、現代 物理学の成果を基礎にして宇宙と地球の相互関連を明 らかにします。これらの科学から得られた知識は 21世紀の地球環境問題、生命起源や将来の人類の生 活などの研究にも関連しています。

組織

[教 授] 長峯健太郎、常深 博、寺田健太郎、 佐々木晶、芝井 広、川村 光、近藤 忠、 中嶋 悟

[准教授] 藤田 裕、林田 清、植田千秋、山中千博、 理、佐伯和人、湯川 諭、谷口年史、 大高 久冨 修、廣野哲朗、住 貴宏、寺崎英紀

[助 教] 中嶋 大、橋爪 光、薮田ひかる、 谷 篤史、境家達弘、桂 横山 正、河井洋輔、青山和司

研究はグループ単位で行われており、その研究内容 については、グループ紹介を参照してください。

教育・研究の現況

物理学の基礎的原理の習得から宇宙・地球へのマク 口な展開を総合的な視点で把握することに重点が置か れています。観測、計測についても先端技術の積極的 利用と新しい手段の開発を目指しています。素粒子・ 核物理学は宇宙の誕生、進化や太陽系形成等の学問分 野と特に関係し、物性物理学は宇宙空間、惑星内部及 び地球内部の極限条件下での物質合成や物性の研究と 深く関わっており、密接な研究協力が行われています。

将来展望

宇宙地球科学専攻は、従来の天文学、地球物理学、 地質学、生物学の境界領域の研究を基礎科学の知識を 土台にして総合的におしすすめる21世紀の新しい専 攻です。地球環境問題に象徴されるように、人間の諸 活動の自然に及ぼす影響が無視できなくなり、人間の 活動と自然の調和が強く求められている現在、基礎科 学の素養を持ちつつ宇宙・地球の全容を把握できる人 材の輩出が強く求められているといえます。

就職先

就職紹介に関しては物理学専攻と共通して行われて います。

*その他

大学院生の募集は年に2回行われています。

宇宙進化グループ

スタップ 長峯健太郎 (教授) 、藤田 裕 (准教授)

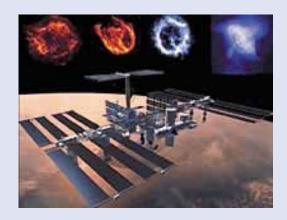
ホームページ http://vega.ess.sci.osaka-u.ac.jp/

[研究テーマ]

- 1) 宇宙論と構造形成(大規模構造、銀河団、銀河形成)
- 2) 高エネルギー宇宙物理学(活動銀河核、ガンマ線バー スト、宇宙線の起源など)
- 3) 重力波の研究(ブラックホール、中性子星連星の合体)
- 4) 天体形成の研究(巨大ブラックホール、星や惑星の形 成機構)

我々の宇宙は、138億年前にビッグバンとよばれる大爆 発によって誕生しました。宇宙の膨張とともに、銀河や宇 宙の大規模構造が形成され、その中で星や惑星が誕生し進 化していきます。宇宙を舞台として超新星の爆発、元素の 進化、ブラックホールの形成、重力波の放出、ガンマ線バ ーストの発生、高エネルギー宇宙線の加速等々の極限状況 での物理現象が生起していきます。このような宇宙物理 学・宇宙論の研究は理論・観測の両面にわたって急速に発 展しており、新たな宇宙像が切り拓かれつつあります。宇 宙の研究には宇宙を基礎物理学の検証の場として研究する 立場と、観測事実を基礎に宇宙そのものの進化や天体現象 を研究する立場の、双方からのアプローチが必要です。本 グループはその双方を基軸とした理論的研究を進め、視野 の広い研究者養成を行っています。上に示したように広範 な研究テーマを扱っていますが、研究方法も純理論的なも のからモデル構築、数値シミュレーション、観測データ解 析にまでわたっています。

Department Earth and Space Science


X線天文学グループ

(スタップ) 常深 博(教授)、林田 清(准教授)、中嶋 大(助教)

ホームページ http://www.xray.ess.sci.osaka-u.ac.jp/

[研究テーマ]

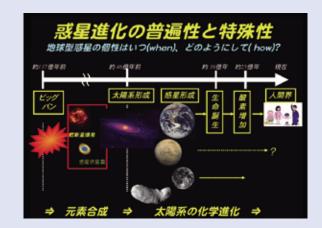
- 1) 光学的に薄い高温プラズマの観測的研究
- 2) 活動銀河核のX線領域での観測的研究
- 3) 宇宙X線観測用の人工衛星搭載用CCDカメラの開発
- 4) X線分光、X線偏光測定技術の研究開発

宇宙には、いたるところに、光学的に薄く大変温度の高い プラズマが広がっています。例えば、銀河団では電磁波で見 える大部分の質量が高温ガスです。つまり高温ガスの分布は 宇宙の構造であり、その起源は宇宙進化そのものです。銀河 系内では、超新星爆発で作られた高温ガスが、周辺のガスと 衝突して、超高エネルギー宇宙線を作っています。ブラック ホールなどの周辺では、数千万度あるいは数億度のプラズマ が形成され、ジェットとして粒子を加速しています。我々は、 これら宇宙の高温・高エネルギー現象を観測的に研究するた め、「すざく」をはじめとする日米欧の人工衛星を使いX線 による宇宙観測を行っています。また、国際宇宙ステーショ ンなどに搭載して、より精度の高い観測を行うためのCCD カメラの開発製作を行っています。2015年度には我々の 開発したCCDカメラなどを搭載したASTRO-H衛星が打ち 上がります。これにより、新しい宇宙像の開拓を目指します。 さらに、将来のX線分光法やX線偏光測定法の研究も進めて います。

惑星科学グループ

タップ 寺田健太郎 (教授) 、植田千秋 (准教授) 、山中千博 (准教授) 、橋爪 光 (助教) 、 **薮田ひかる**(助教)、河井洋輔(助教)

ホームページ http://www.ess.sci.osaka-u.ac.jp/japanese/3_research/groups/g04terada.html


[研究テーマ]

- 1) 隕石物質からみた元素の起源と太陽系初期形成史
- 2) 地球型惑星の進化
- 3) 自然界における固体粒子の磁気活性
- 4) 未検討の電磁気効果の解明と、それを利用した惑星環 境·環境物理計測
- 5) 次世代に向けた新しい分析手法の開発 など

近年、私たちの太陽系以外にも惑星がたくさん発見され、 惑星の形成は恒星誕生に伴う比較的普遍的なプロセスであ ることが解ってきました。一方で、生命を育む太陽系第3 惑星「地球」は、惑星達の中でも特異な存在と言えます。 このような、人類にとってかけがえのない「地球」の個性 は、いつ (when)、どのようにして (how) 決定づけら れたのでしょうか?

私たちの研究グループでは、従来の望遠鏡を使った観測 的なアプローチではなく、同位体顕微鏡等を使った物質科 学的なアプローチで宇宙の歴史を探ります。具体的には、 地球や火星などの惑星物質、月や隕石中に含まれる元素の

高精度同位体比測定や磁性/ESR測定、有機化合物の化学 分析等を通して、恒星内部の元素合成、太陽系の初期形成 史とその進化、ならびに現在の惑星環境についての研究を 行っています。併せて、未検討の電磁気効果の解明と、そ れを利用した新しい分析手法の開発にも取り組んでいます。

Department Earth and Space Science

惑星物質学グループ

スタッフ 佐々木晶 (教授)、大高 理 (准教授)、佐伯和人 (准教授)、谷 篤史 (助教)

ホームページ http://astrogranma.ess.sci.osaka-u.ac.jp/

[研究テーマ]

- 1) 固体天体(地球、月、火星、小惑星、氷天体など)の 形成・進化過程と火成活動
- 2) 地球深部物質の相転移と物性(深部物質・模擬物質の 放射光超高圧実験
- 3) 地球表層物質の形成と変遷(ガスハイドレート、火成 岩など)
- 4) 実験装置および画像解析法の開発
- 5) 探査機による宇宙ダスト計測とダスト加速器の開発
- 6) 宇宙機探査計画における物質科学研究と観測機器開発

我々の住む地球や月惑星などの太陽系天体は、様々な表 層環境と内部構造をもちます。これには天体の熱進化にと もなう物質の分化が大きな役割を果たしています。探査機 および地上からの観測、シミュレーション、実験などを用 いて、多様な現在の地球惑星の形成・進化に関する情報を 解読し、天体の成り立ちを明らかにします。


赤外線天文学グループ

スタッフ 芝井 広(教授)、住 貴宏(准教授)

ホームページ http://www-ir.ess.sci.osaka-u.ac.jp

[研究テーマ]

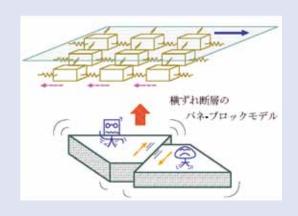
- 1) 太陽系外惑星の人口調査と直接観測
- 2) 原始惑星系円盤の観測的研究
- 3)銀河系構造の観測的研究
- 4) 宇宙用遠赤外線干渉計の開発。

本グループでは、赤外線観測によって太陽系外惑星系形 成過程の研究を行っています。これらの宇宙現象において は「星間塵」と呼ばれる固体微粒子が、赤外線へのエネル ギー変換、宇宙化学反応の触媒など、極めて重要な役割を 果たしています。星間塵は赤外線を強く放射するため、こ れを精密に観測することでさまざまな情報を引き出し、重 要な宇宙現象の解明につなげています。赤外線の中でも波 長の長い遠赤外線は地球大気が不透明になるために地上か ら観測ができません。そこで人工衛星や科学観測用大気球 に望遠鏡を搭載して、宇宙からの精密観測を行っています。 特に世界初の干渉計を開発し、これによって遠赤外線での 空間分解能(解像度)を一挙に10倍以上高めるプロジェク トを進めています。また波長の短い赤外線(近赤外線)は ハワイ島にある「すばる」望遠鏡で観測ができるため、原 始惑星系円盤や若い巨大ガス惑星の観測を行っています。 ニュージーランドにあるMOA-II望遠鏡を用いて、重力マイ クロレンズ現象を利用した太陽系外惑星探査を行っていま す。これまでに木星や海王星程度の重い惑星を発見してお り、今後地球のような軽い惑星の発見を目指しています。

Department Earth and Space Science

理論物質学グループ

スタッフ 川村 光 (教授)、湯川 諭 (准教授)、青山和司 (助教)


ホームページ http://thmat8.ess.sci.osaka-u.ac.jp/

[研究テーマ]

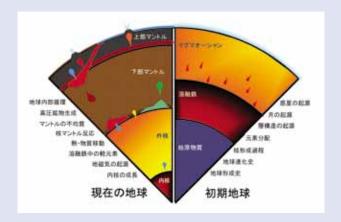
- 1) 地震の統計モデルの計算機シミュレーション。特に、摩 擦の物理法則に基づいた、固着 - 滑り動的不安定性とし ての地震現象の物理の研究。
- 2) ランダム系、ガラス系の秩序化現象とスローダイナミッ クス。特に、スピングラスの相転移と非平衡ダイナミッ クスの研究。
- 3) フラストレーションの統計物理。特に相互作用に強い競 合があるパイロクロアや3角格子系等のフラストレート 磁性体の秩序化の研究。
- 4) 超伝導体、特に揺らぎ効果の大きい高温超伝導体でのボ ルテックス秩序と相図の研究。
- 5) 分子動力学シミュレーションによる非平衡現象の研究。

自然界には多様な物質があり、それらが互いに影響を及ぼ し合ったり協調したりして、より複雑なシステムを構成して います。ミクロなスケールでは原子・分子から、マクロなス ケールでは宇宙・地球に至るまでを、多自由度の相互作用系

として理論的に解明するアプローチにチャレンジしています。 目下の2大テーマは、物質の示す多様な相転移現象の解明と、 固着 - 滑り不安定性としての地震現象の解明です。これらを 多体相互作用系の協力現象と捉える統計力学的観点から、主 として計算機シミュレーションを用いた研究を行っています。

惑星内部物質学グループ

スタッフ 近藤 忠 (教授)、谷口年史 (准教授)、寺崎英紀 (准教授)、境家達弘 (助教)


ホームページ http://anvil.ess.sci.osaka-u.ac.jp/

[研究テーマ]

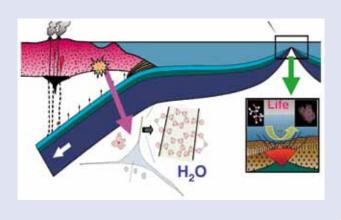
- 1) 地球惑星内部の相転移と鉱物の物性変化
- 2) 地球惑星の起源と進化
- 3)極限環境下における電気・磁気測定
- 4) 超高圧・高温発生技術と測定技術の開発

本グループでは、主に地球物理学・固体物理学を基盤とし て惑星内部の高温・高圧下にある物質の挙動に関する実験的 研究を行っています。これらの極端条件を再現する手段とし て、レーザー加熱ダイヤモンドアンビルを初めとする様々な 高温高圧発生装置の開発を行っている他に、大阪大学レーザ ーエネルギー学研究センターの大規模レーザー設備を用いた 衝撃圧縮実験法を用い、これらの条件下での各種測定法の開 発を行っています。研究内容は、地球や惑星の直接到達でき ない深部に相当する高温高圧力下での物質の合成、それらの 物質の構造や物性の測定、放射光X線回折や分光学的手法に

よるその場観察実験などです。これらの実験で得られた結果 を惑星規模の現象に応用し、地球惑星の構造と進化に関して 物質科学的な解明を目指した研究を行っています。

Department Earth and Space Science

地球物理化学グループ


中嶋 悟(教授)、久富 修(准教授)、廣野哲朗(准教授)、桂 誠(助教)、横山 正(助教)

ホームページ http://life.ess.sci.osaka-u.ac.jp/

[研究テーマ]

- 1)岩石·水·有機物相互作用
- 2) 地球資源環境科学
- 3) 地震と断層の物質科学
- 4) 生物物理学

地球や惑星の主として表層で起きている動的な過程(火山・ 地震活動、地殻変動、物質移動・反応・循環、資源の集積、 環境汚染、生命の起源と進化等)は、水、無機物質(岩石・ 鉱物)、有機物質、生物等が複雑な相互作用を行っている結 果です。そこで、水、溶存物質、無機・有機物等の性質及び 岩石・水相互作用、有機無機相互作用、生命現象等を定量的 に物理化学的に記述し、動的過程の機構と時間スケール等を 解明し、地球惑星表層変動、生命現象の予測を行い、実在世 界の総合自然科学を構築していきます。

