Academic Year 2018

International Physics Course

Syllabus (Classes)

April 1st, 2018

Osaka University, Graduate School of Science

Table of Contents

1	Master Course	3
	(IPC)High Energy Physics	4
	(IPC)Nuclear Physics in the Universe	6
	(IPC)Introduction to Theoretical Nuclear Physics	8
	(IPC)Synchrotron Radiation Spectroscopy	10
	(IPC)Condensed Matter Theory	11
	(IPC)Quantum Field Theory II	12
	(IPC)Quantum Many-Body Systems	15
	(IPC)Quantum Field Theory I	16
2	Doctor Course	18
	(IPC) Topical Seminar I \lceil Terahertz spectroscopy of elementary excitations in solids \rfloor	
		19

(IPC)High Energy Physics

Course Code	24P039
Course Number	24PHYS5F307
Credits	2
Instructor	AOKI Masaharu Office:
Office Hours	
Eligibility	IPC course 1, 2 Optional
Schedule	Spring and Summer Term Period: Mon2
Room	理/E201 講義室
Type of Class	Lecture Subject
Course Objective	Understand the basics of High Energy Physics (experimental studies of elemen-
	tary particle physics).
Learning Goals	Students can
	- draw Feynman diagrams of various interactions,
	- do calculations using relativistic kinematics,
	- describe the basic physics behind the interaction of particles with materials,
	- understand how the standard model was established.
Requirements,	Quantum Mechanics and Special Relativity
Prerequisites	
Special Note	

Class Plan

High Energy Physics is a research field based on a quantum mechanics and a special relativity. In this lecture, we will overview this field so that the students can have images what will they do. The lecture will be given from the experimentalist's point of view, and thus the mathematical strictness will be sometimes ignored. The lecture will try to cover whole contents of the textbook only in 15 weeks and that is very tough. The students are very encouraged to read the textbook in home to catch-up the speed of this lecture.

- 1. Particles and Interactions
- 2. Decay Rates and Cross Sections
- 3. Relativistic KInematics
- 4. Dirac Equation
- 5. Interaction by Particle Exchange
- 6. Electromagnetic Interaction
- 7. Symmetries
- 8. Quark Model
- 9. QCD
- 10. Weak Interaction (1)
- 11. Weak Interaction (2)
- 12. Neutrino Oscillations
- 13. CP Violation
- 14. Electroweak Unification
- 15. Tests of the Standard Model

Independent	Students are required to do homework, and study some topics introduced in
Study Outside of	the class.
Class	
Textbooks	Mark Thomson Modern Particle Physic, Cambridge University Press
References	D.Griffths Introduction to Elementary Particles, John Wiley&Sons Inc.
	D.H.Perkins Introduction to High Energy Physics, Addison Wesley
Grading Policy	Final exam: 60%
	Home work, mini midterm exam, mini quiz: 40%

Other Remarks

(IPC)Nuclear Physics in the Universe

0.4D091
24P031
24PHYS5F307
2
SHIMA Tatsushi Office:
Master course and Doctor course students
Spring and Summer Term Period: Fri4
理/B307 講義室
Lecture Subject
Atomic nuclei can be specified as the Quantum Finite Many-Body System with
two Fermions.
We seek to reorganize the basic understanding of Sub-Atomic Physics, espe-
cially the Nuclear Physics, from a rather broad view point on the basis of Quan-
tum Mechanics. Nucleosynthesis in Nuclear Astrophysics is also discussed.
There, we will see the connection between the Micro World and the Macro
World.
We try to understand the very basic properties of nuclei in which four funda-
mental forces play roles. We will see how those forces induce various phenomena
on nuclei, such as nuclear reactions and nuclear decays. We will learn how those
nuclear processes are related to the evolutions of the stars, the universe and
matters.
Since nuclei are Quantum Finite Many-body System with two Fermions
basic understandings of Quantum Mechanics and also Electromagnetism are
strongly requested.
Starting from the basic properties of sub-atomic particles, we seek to get an
overview of the world of nuclei.
[Class Plan]
1) Overview of subatomic physics and nuclear astrophysics
2) Basic features of particle physics
3) Properties of nuclear interactions and nuclear mass
4) Fundamental interactions in nuclei and in the universe
5) Strong interaction and nuclear structure
6) Decay widths and uncertainty principle
7) Nuclear decays by means of weak and electromagnetic interactions
8) Gravity in micro world
9) Overview of nuclear excitations
•
10) Nuclear excitations and deexcitations
10) Nuclear excitations and deexcitations11) Commutation relationship, operator and sum rule
10) Nuclear excitations and deexcitations11) Commutation relationship, operator and sum rule12) Big-bang nucleosynthesis
10) Nuclear excitations and deexcitations11) Commutation relationship, operator and sum rule

Textbooks	Students will write a summary report on how they understood the subject of
	each lecture. They have to submit the report in the following week.
References	Important subjects will be summarized in slides, which will be uploaded on the
	web site.
Grading Policy	Cauldrons in the Cosmos, Claus E. Rolfs and W.S. Rodney, University Of
	Chicago Press
Other Remarks	Obligatory attendance at lectures and reports.

$(IPC) Introduction\ to\ Theoretical\ Nuclear\ Physics$

Course Code	24P032
Course Number	24PHYS5F308
Credits	2
Instructor	HOSAKA Atsushi Office:
211502 00002	
Office Hours	Anytime by e-mail
Eligibility	Master course M1 and M2 Optional
Schedule	Spring and Summer Term Period: Tue3
Room	理/E304 講義室
Type of Class	
Course Objective	This is an introductory course for the description of atomic nuclei as many-body
	systems of nucleons. Emphasis is put on the dynamics based on the special
	theory of relativity which gives us a systematic view on the understanding of
	nuclear binding energy, the size of nuclei and the magic numbers. As a simple
	application, we discuss the equation of state for the nuclear matter. We further
	discuss chiral symmetry for the basis of the strong interaction physisc, where
	we also introduce the concept of spontaneous symmetry breaking.
Learning Goals	Students can lean how much of nuclear physics is based on a rather simple
	physics laws. Among them is the SSB of chiral symmetry and the presence of
	the pion.
Requirements,	Students are encouraged to be familiar with some elementary issues of analytical
Prerequisites	mechanics and quantum mechanic.
Special Note	
Class Plan	[Class plan]
	1. Introduction – basic issues of atomic nuclei
	2. Magic numbers and spin-orbit force
	3. Dirac equation 1 – Derivations
	4. Dirac equation 2 – Applications
	5. Field theory for nuclei 1 – Scalar field and quantization
	6. Field theory for nuclei 2 – Fermion field
	7. Lagrangians for various fields
	8. Nuclear matter 1 – Introduction to sigma-omega model
	9. Nuclear matter 2 – Mean field method and binding energy
	10. Nuclear properties
	11. Chiral symmetry – Pions and currents
	12. Linear sigma model
	13. Nambu-Goldstone theorem
	14. Nambu-Jona-Lasinio model
	15. Examination
Independent	Students should spend home works which are given every class.
Study Outside of	
Class	
Textbooks	

References	Hiroshi Toki and Atsushi Hosaka, Atomic nuclei as relativistic many-body sys-
	tems
	Osaka University Press, 2011 (in Japanese)
	Atsushi Hosaka and Hiroshi Toki, Quarks, Baryonsand chiral symmetry, World
	Scientific, 2001
Grading Policy	Reports and examination
Other Remarks	This is a joint course with a Japanese class of the same subject

(IPC)Synchrotron Radiation Spectroscopy

Course Code	24P035
Course Number	24PHYS5F305
Credits	2
Instructor	KIMURA Shin-ichi Office:
Office Hours	To be announced.
Eligibility	International Physics Cource Mater cource Optional
Schedule	Spring and Summer Term Period: Fri2
Room	理/E203 講義室
Type of Class	Lecture Subject
Course Objective	Synchrotron radiation (SR) is a powerful light source in the energy/wavelength
	region from infrared to X-ray. Nowadays, SR is widely used to obtain the mi-
	croscopic information of electronic and crystal structures of not only condensed-
	matters but also biological materials. The technologies of SR beamlines and
	analysis methods is ever-progressing. The goal of this course is to understand
	the method of SR spectroscopy and recent topics using SR.
Learning Goals	To understand why synchrotron radiation is useful.
Requirements,	A knowledge of classical electrodynamics and quantum mechanics will be as-
Prerequisites	sumed.
Special Note	
Class Plan	[Course Content]
	The topics covered in the course will include the principle of the emission
	of synchrotron radiation, technology of beamlines in the energy region from
	infrared to X-ray, and scientific topics.
	[Class plan]
	1. Fundamentals of synchrotron radiation
	2. Fundamentals of spectroscopies from infrared to X-ray
	3. Vacuum-ultraviolet spectroscopy (reflection/absorption, photoemission,
	emission)
	4. X-ray spectroscopy (X-ray absorption spectroscopy, XANES, EXAFS, X-ray
	diffraction)
	5. Infrared/terahertz spectroscopy (molecular vibration, reflection of metals,
	near-field spectroscopy/imaging)
Independent	To read some papers and textbooks that are announced in the lecture.
Study Outside of	
Class	
Textbooks	To be announced.
References	To be announced.
Grading Policy	By report.
Other Remarks	The course will be given in English.

(IPC)Condensed Matter Theory

Course Code	24P037
Course Number	24PHYS5F305
Credits	2
Instructor	Keith Slevin Office: H618
	Email: slevin@phys.sci.osaka-u.ac.jp
Office Hours	
Eligibility	Optional
Schedule	Fall and Winter Term Period: Tue3
Room	理/E304 講義室
Type of Class	
Course Objective	The goal of this course is to introduce the basic concepts needed to explain the
	physical properties of solids.
Learning Goals	
Requirements,	A knowledge of classical and quantum mechanics, electricity and magnetism,
Prerequisites	and statistical mechanics will be assumed.
Special Note	
Class Plan	The topics covered will include the Einstein and Debye theories of the specific
	heat of solids, the Drude and Sommerfeld theory of metals, the periodic table,
	ionic, covalent and metallic bonding, crystal structure and the reciprocal lattice,
	wave scattering by crystals, electrons in periodic potentials (Bloch's theorem),
	semiconductors, and magnetism.
Independent	
Study Outside of	
Class	
Textbooks	Steven H. Simon/The Oxford solid state basics/Oxford University Press/978-
	0-19-968077-1
References	N. W Ashcroft and N. D. Mermin (1976). Solid state physics.
	H. Ibach and H. Lth (2009). Solid-state physics : an introduction to principles
	of materials science.
	C. Kittel (2005). Introduction to solid state physics.
Grading Policy	Reports (40%) and final examination (60%) .
Other Remarks	

(IPC)Quantum Field Theory II

Course Code	24P026
Course Number	24PHYS5F308
Credits	2
Instructor	YAMAGUCHI Satoshi Office:
Office Hours	Anytime. It is better to make an appointment by e-mail.
Eligibility	
Schedule	Fall and Winter Term Period: Fri3
Room	理/B307 講義室
Type of Class	Lecture Subject
Course Objective	We will learn more on the quantum field theory. In particular we will learn
	loop corrections, renormalization, renormalization group, and quantization of
	non-abelian gauge theories.
Learning Goals	Students will be able to calculate the loop diagrams. Students will understand
	renormalization and be able to explain it. Students will be able to quantize
	gauge theory in the covariant gauge and derive the Feynman rule.
Requirements,	You should have taken Qunatum field theory I course and understand the
Prerequisites	content well.
Special Note	

Class Plan

- 1. Action and path-integral
- 2. Correlation function and path-integral
- 3. Effective action
- 4. Divergence and dimension counting
- 5. Calculation of 1-loop diagram by dimensional regularization
- 6. LSZ reduction formula
- 7. Renormalization 1: on-shell scheme
- 8. Renormalization 2: MS bar scheme
- 9. Renormalization group
- 10. Symmetry and Lie algebra
- 11. Action of gauge theory
- 12. Gauge fixing and Faddeev-Popov determinant
- 13. BRST symmetry
- 14. Perturbation in gauge theory 1: tree diagram
- 15. Perturbation in gauge theory 2: loop diagram
- 16. 作用と経路積分
- 17. 相関関数と経路積分
- 18. 有効作用
- 19. 摂動論とファインマンルール
- 20. 1ループ図の次元正則化による計算
- 21. 繰り込み1:オンシェル・スキーム
- 22. 繰り込み2: MS バー・スキーム
- 23. 繰り込み群
- 24. LSZ 簡約公式
- 25. フェルミオン
- 26. Lie 群と Lie 代数
- 27. ゲージ理論の作用
- 28. ゲージ固定と Faddeev-Popov 行列式
- 29. BRST 対称性
- 30. ゲージ理論での摂動計算

Independent	Do the calculations which are skipped in the lecture.
Study Outside of	Solve the homework problems given in the class.
Class	
Textbooks	
References	Srednicki, Quantum Field Theory
	Peskin, Schroeder, An Introduction To Quantum Field Theory
	Weinberg, The Quantum Theory of Fields, Volume 1, 2
Grading Policy	The course grade will be based on the homework assignments.
O.I. D. 1	

(IPC)Quantum Many-Body Systems

Course Code	24P028
Course Number	24PHYS5F305
Credits	2
Instructor	KOSHINO Mikito Office:
Office Hours	
Eligibility	
Schedule	Spring and Summer Term Period: Wed2
Room	理/E304 講義室
Type of Class	Lecture Subject
Course Objective	We learn several problems in condensed matter physics in which the idea of
	topology plays an essential role. In the quantum Hall effect, for example, the
	precise quantization of the observed Hall conductivity is closely related to the
	geometrical phase (Berry's phase) in the quantum mechanical wave function.
	Using the elementary quantum mechanics, I introduce the ideas of various
	topological numbers appearing in quantum physics.
Learning Goals	
Requirements,	
Prerequisites	
Special Note	
Class Plan	1. Quantum Hall insulator
	- 2D electron gas / Landau levels / Hall conducit vity
	- Laughlin's argument / Berry's phase
	– Edge state / Edge-bulk correspondence
	2. Graphene
	- tight-binding model and honeycomb lattice
	- 2D Dirac equation
	- Edge state
	3. Various topological matters
	- Topological insulators
	- Weyl semimetals
Independent	
Study Outside of	
Class	
Textbooks	
References	
Grading Policy	Report assignments

(IPC)Quantum Field Theory I

Course Code	24P033
Course Number	24PHYS5F308
Credits	2
Instructor	HASHIMOTO Koji Office:
Office Hours	Anytime
Eligibility	Physics Department, graduate students Optional
Schedule	Spring and Summer Term Period: Thu3
Room	理/E304 講義室
Type of Class	Lecture Subject
Course Objective	Quantum field theory is universal language to describe wide area in physics
	including
	particle physics, statistical physics, and condensed matter physics. We learn
	basics of
	quantum field theory and master how to evaluate various physical quantities.
Learning Goals	First students master quantization of fields, symmetry and conservation laws,
	perturbation
	theory, Feynman diagrams.
Requirements,	Quantum mechanics and special relativity. It would be helpful to have
Prerequisites	knowledge in Dirac equation and covariant Maxwell equations.
Special Note	
Class Plan	1. Fields and the action principle, Euler equations.
	2. Canonical quantization
	3. Quantization of Schrodinger fields
	4. Quantization of scalar fields
	5. Quantization of Dirac fields
	6. Symmetry and conservation laws. Noether's theorem
	7. Interaction picture and invariant perturbation theory
	8. Gell-Mann-Low relations
	9. Wick's theorem and Feynman diagrams 1.
	10. Feynman diagrams 2.
	11. Cross sections
	12. Evaluation of scattering amplitudes
	13. Decay widths and lifetime
	14. Many-body systems and quantum field theory
	15. Summary
Independent	Homework sets are given.
Study Outside of	
Class	
Textbooks	David Tong, Quantum Field Theory, available online
	♥/ • • • • • • • • • • • • • • • • • • •

References	Standard textbooks:
	坂井典佑「場の量子論」裳華房 (2002)
	江沢潤一「量子場の理論 素粒子物理から凝縮系物理まで」朝倉書店 (2008)
	Landau and Lifshitz 「Quantum Electrodynamics」 Pergamon Press
	Advanced textbooks:
	M.Peskin and D.Schroeder: An Introduction to Quantum Field Theory
	(Addison-Wesley)
	V.P. Nair 「Quantum Field Theory」 Springer (2005)
	九後汰一郎「ゲージ場の量子論」(I、II) 培風館
Grading Policy	Attendance Record + Homework (100%)

Other Remarks

2. Doctor Course

2 Doctor Course

(IPC) Topical Seminar I \lceil Terahertz spectroscopy of elementary excitations in solids \rfloor

Course Code	24P019
Course Number	24PHYS5F300
Credits	1
Instructor	SHIMANO Ryou Office:
	KIMURA Shin-ichi Office:
Office Hours	before and after lecture time
Eligibility	Physics Department DC, MC optional
Schedule	Intensive Period: Other
Room	掲示により通知
Type of Class	Lecture Subject
Course Objective	Terahertz spectroscopy has been developed as a powerful tool to study the low energy electromagnetic responses in solids and molecular systems. From the viewpoint of condensed matter physics, various collective excitations and elementary excitations exist in the terahertz frequency range, such as phonon, plasmon, superconducting gap, spin density wave gap. Accordingly, terahertz spectroscopy is now recognized as an important tool for the spectroscopic study in a wide range of condensed matter systems. In this intensive course, starting from a basic introduction to the optical responses of solids, advanced studies of quantum materials with terahertz spectroscopy technique will be reviewed.
Learning Goals	To understand the possibility of terahertz spectroscopy and connection to solid- state physics
Requirements,	Basic knowledge of quantum mechanics, statistical physics, and solid state
Prerequisites	physics is desirable.
Special Note	TBA
Class Plan	1. Introduction to optical responses of solids
	2. Time-domain terahertz spectroscopy
	3. Excitons in semiconductors
	4. Superconductors
	5. Charge density wave, Spin density wave systems
	6. Novel nonequilibrium light-induced phenomena
Independent	Reading papers and textbooks
Study Outside of	
Class	
Textbooks	none
References	1. Mark Fox, "Optical Properties of Solids" (Oxford University Press, 2001).
	2. Martin Dressel and George Grüner, "Electrodynamics of Solids" (Cambridge
	University Press, 2002).
Grading Policy	Evaluation will be based on course attendance and submitted reports.
Other Remarks	none

2. Doctor Course

発行年月日 平成 30 年 4 月 11 日

発行 大阪大学大学院理学研究科 大学院係

製版 大阪大学大学院理学研究科 物理学専攻 山中 卓

URL http://www.sci.osaka-u.ac.jp/ja/campuslife/coursedesciption_d/

この冊子は、KOAN のデータを元に Python 2.7 と $\mathrm{MacT_EX2017}$ を用いて自動生成しました。 レイアウトは大阪大学コミュニケーションデザイン・センターのシラバスを参考にしました。