Discovery of the complexity of the quark, a fundamental constituent of matter

Assigning a chaos index for dynamics of generic quantum field theories is a challenging problem because the notion of a Lyapunov exponent, which is useful for singling out chaotic behavior, works only in classical systems. We address the issue by using the AdS/CFT correspondence, as the large N_c limit provides a classicalization (other than the standard $\hbar \rightarrow 0$) while keeping nontrivial quantum condensation. We demonstrate the chaos in the dynamics of quantum gauge theories: The time evolution of homogeneous quark condensates (⁻qq) and (⁻q γ_5 q) in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at a large 't Hooft coupling $\lambda \equiv N_c g^2_{YM}$ exhibits a positive Lyapunov exponent. The chaos dominates the phase space for energy density $E \gtrsim (6 \times 10^2) \times m_q^4 (N_c/\lambda^2)$, where mq is the quark mass. We evaluate the largest Lyapunov exponent as a function of (N_c, λ ,E) and find that the N=2 supersymmetric QCD is more chaotic for smaller N_c.

